# COLLEGE OF ENGINEERING & TECHNOLOGY







### What is GT?

- ✤ GT is a manufacturing philosophy in which similar part are identified and grouped together to take advantage of their similarities in manufacturing and design.
- This group of parts or components is called <u>part</u> <u>families</u>.





# **Part Families**

- It is a collection of part which are similar either because of geometric shape and size or because similar processing steps are required in their manufacture.
- The other important features that is important choosing the families;
- Manufacturing tolerances
- Required quantities
- \* Materials
- Special features, which will require the use of different machine







COLLEGE OF ENGINEERING & TECHNOLOGY

# **Part Families**

Group technology begun by grouping parts into families, based on their attributes.

There are three methods that can be used to form part families:

- Manuel visual inspection
- Production flow analysis (PFA)
- Part Classification and coding system



# **Manual visual inspection**

Involves arranging a set of parts into groups known as *part families* by visually inspecting the physical characteristics of the parts.





#### **Manual visual inspection limitations**

- -Incorrect results
- -Human error
- -Different judgment by different people
- -Inexpensive
- -Least sophisticated
- -Good for small companies having smaller number of part



# **Production flow analysis**

- PFA is a method of identifying part families and associated machine tool grouping by analyzing the route sheets for parts produced in a given shop.
- It group together the parts that have similar operation sequences and machine routings.



# **Part-Family Formation**

|         | A-112   | A-115 | A-120        | A-123 | A-131   | A-212 | A-230 | A-432 | A-451 | A-510 |
|---------|---------|-------|--------------|-------|---------|-------|-------|-------|-------|-------|
| SAW01   | 1       |       | 1            | 1     | 1       |       |       | 1     | 1     | bino  |
| LATHE01 | 10      |       | 1.De<br>Idbi | 1     | 010     | 181   | 120   | 28    | 1     |       |
| LATHE02 | 1       |       | 1            |       | 1       | 14    | É À   | 1     | 1     | 01    |
| DRL01   | ALC: NO | 1     |              |       | K       |       | IN    | -     | 4     | 1     |
| MILL02  | 1       | 1     |              |       | 121     |       | N     |       |       | DH.   |
| MILL05  |         |       |              | 1     | ģ       | 1     | 1     |       | Ę     | 1     |
| GRIND05 | 1       | -     |              |       |         | -     |       |       | -     |       |
| GRIND06 | 1:      | ~     | 1            | re    | 1.2     |       |       |       |       | 1     |
| INSP03  |         | 1     | 10           | W     | and and | 1     | 1     | A BA  | R.    |       |
| INSP06  | 1       | -     | 1            | 1     | 1       | 11    | -12   | 1     | 1     | 1     |



# Parts classification and coding

Large manufacturing system can be decomposed into smaller subsystems of part families based on similarities in part.

Part classification as per Attributes

- 1. Part design attributes and
- 2. Part manufacturing attributes
- 3. Both design and manufacturing attributes



# Part design attributes

- Part configuration (round or prismatic)
- Dimensional envelope (length to diameter ratio)
- Surface integrity (surface roughness, dimensional tolerances)
- ✤ Material type
- Raw material state (casting, forging, bar stock, etc.)



# Part manufacturing attributes

Operations and operation sequences (*turning*, *milling*, *etc*.)

- Batch sizes
- Machine tools
- Cutting tools
- Work holding devices
- Processing times



# **Coding methods**

- Coding methods are employed in classifying parts into part families
- \* *Coding* refers to <u>the process of assigning symbols to the parts</u>
- The symbols represent design attributes of parts or manufacturing features of part families
- The variations in codes resulting from the way the symbols are assigned can be grouped into three distinct type of codes:
  - Monocode or hierarchical code
  - Polycode or chain-type
  - Hybrid or mixed code



#### Monocode or hierarchical code

- The structure of monocode is like a tree in which each symbol amplifies the information provided in the previous digit.
- ✤ It provide a relatively compact structure which give information about part in a limited no. of digits.





# Polycode (Chain-type)

- The code symbols are independent of each symbol in the sequence is fixed and not depend on the preceding digit
- Each digit in specific location of the code describes a unique property of the work piece
  - ✓ it is easy to learn and useful in manufacturing situations where the manufacturing process have to be described
  - ✓ the length of a polycode may become excessive because of its unlimited combinational features





| Digit | Class of           | Possible value of digits             |                                   |                                           |       |  |  |
|-------|--------------------|--------------------------------------|-----------------------------------|-------------------------------------------|-------|--|--|
| Digit | feature            | 1                                    | 2                                 | 3                                         | 4     |  |  |
| 1     | External<br>shape  | Cylindrical<br>without<br>deviations | Cylindrical<br>with<br>deviations | Cylindrical<br>with Boxlike<br>deviations |       |  |  |
| 2     | Internal<br>shape  | None                                 | Center<br>hole                    | Brind<br>center hole                      | •••   |  |  |
| 3     | Number of<br>holes | 0                                    | 1-2 3-5                           |                                           | •••   |  |  |
| 4     | Type of<br>holes   | Axial                                | Cross                             | Axial<br>cross                            | • • • |  |  |
| 5     | Gear<br>teeth      | Worm                                 | Internal<br>spur                  | Ex ternal<br>spur                         | •••   |  |  |
| •     | •                  | •                                    | •                                 | •                                         | •     |  |  |
| •     | •                  | •                                    | •                                 | •                                         | •     |  |  |



#### **MIXED CODE (HYBRID CODE)**

- It is the mixture of both monocode and polycode systems. Mixed code retains the advantages of both systems. Most coding systems use this code structure.
- A code created by this manner would be relatively more compact than a pure attribute code while retaining the ability to easily identify parts with specific characteristics.



#### **Parts Classification and Coding Systems**



- Part classification and coding systems which are widely recognized among people familiar with GT:
- 1. OPTIZ system
- 2. MICLASS system
- 3. CODE system



#### The OPITZ classification system

- It is a mixed (hybrid) coding system
- Developed by Opitz, Technical University of Aachen, 1970
- It is widely used in industry
- It provides a basic framework for understanding the classification and coding process
- It can be applied to machined parts, non-machined parts (both formed and cast) and purchased parts
- It considers both design and manufacturing information



# The Opitz coding system consists of three groups of digits:

Form code 12345 Supplementary code 6789

part geometry and features relevant to part design

*information relevant to manufacturing (polycode)*  Secondary code ABCD

Production processes and production sequences





**Optiz Coding and Classification System** 



#### **MICLASS System**

- MICLASS = Metal Institute Classification System
- Consists of two major sections (segments)
- First segment is mandatory-total of 12 digits
- First 4 digits describe main shape and their elements
- Second 4 digits describe dimensions ...



#### **MICLASS System**





#### **MICLASS System**



#### The KK-3 System

It was originally developed by the Japan Society for Promotion of Machining Industry. The domain is machining and grinding parts

| Digit | I           | tem  | s (ł            | Rotational Components)              |
|-------|-------------|------|-----------------|-------------------------------------|
| 1     | Parts       |      | Genera          | al classification                   |
| 2     | name        |      | Detail          | ed classification                   |
| 3     | Differences | -    | Gener           | al classification                   |
| 4     | Material    | S    | Detail          | ed classification                   |
| 5     | Chief       |      | L engtl         | a                                   |
| б     | Dimensi     | ons  | Diame           | ter                                 |
| 7     | Primary     | Sha  | pes and ratio o | f major dimensions                  |
| 8     |             |      |                 | External primary shape              |
| 9     | 3968        |      |                 | Concentric screw threaded parts     |
| 10    | e ce        | E    | ternal          | Functional cut-off parts            |
| 11    | E.          | ຣບ   | <b>#</b> face   | Extraordinary shaped parts          |
| 12    | g g         |      |                 | Forming                             |
| 13    | - PG        |      |                 | Cylindrical surfaces                |
| 14    | d ki        | Ļ    |                 | Internal primary shape              |
| 15    | Я.          | lf   | nternal         | Internal curved surface             |
| 16    | ्रम्ह       | SI   | larrace         | Internal flat / cylindrical surface |
| 17    | det         | En   | d surface       |                                     |
| 18    | -<br>De     | No   | n-concentric    | Regularly located holes             |
| 19    | tha<br>tha  | ho   | les             | Special holes                       |
| 20    | 01          | 1    | Non-cutting pr  | ocesses                             |
| 21    | Accu        | racy | ,               |                                     |



#### The KK-3 System

|            | 60 mm                                                                         |                                          |              |
|------------|-------------------------------------------------------------------------------|------------------------------------------|--------------|
|            | Property of the second                                                        |                                          |              |
| Code diait | Research and the standard<br>show such as the main<br>sin dimension, entitied |                                          | nhut<br>nhut |
| Code digit | Item                                                                          | Component condition                      | Cod          |
| 1          | } Name                                                                        | Control valve                            | 0            |
| 2          | J Hanne                                                                       | (others)                                 | 9            |
| 3          | } Material                                                                    | Copper bar                               | 7            |
| 4          | J                                                                             |                                          |              |
| 5          | Dimension length                                                              | 80 mm                                    | 2            |
| 6          | Dimension diameter                                                            | 60 mm                                    | 2            |
| 7          | Primary shape and ratio                                                       |                                          |              |
|            | of chief dimension                                                            | L/D 1.3                                  | 2            |
| 0          | External surface                                                              | With functional tapered                  | 100          |
| 9          | Conceptric serves                                                             | surrace                                  | 3            |
| 10         | Eunctional cutoff                                                             | None                                     | 0            |
| 11         | Extraordinary shaped                                                          | None                                     | 0            |
| 12         | Forming                                                                       | None                                     | 0            |
| 13         | Cylindrical surface > 3                                                       | None                                     | 0            |
| 14         | Internal primary                                                              | Piercing hole with dia.                  | 2            |
| 15         | Internal curved surface                                                       | None                                     | ō            |
| 16         | Internal flat surface                                                         | None                                     | 0            |
| 17         | End surface                                                                   | Flat                                     | 0            |
| 18         | Regularly located hole                                                        | Holes located on<br>circumferential line | 3            |
| 19         | Special hole                                                                  | None                                     | 0            |
| 20         | Noncutting process                                                            | None                                     | 0            |
| 21         | Accuracy                                                                      | Grinding process on                      |              |



#### **COAD System**

- The CODE system is a part classification and coding system developed and marketed by Manufacturing Data
  System(MDSI).
- ✤ The CODE number has eight digits.
- For each digit there are 16 possible values which are used to describe the part's design and manufacturing characteristics.
- [1]-basic geometry of part (Major Deviation of CODE).
   [2&3]- information about manufacturing process.
  - [4,5&6]-specify secondary manufacturing process . (threads ,grooves ,slot ,etc...)
  - [7&8]-indicate overall size of the part.



#### **BENEFITS OF GROUP TECHNOLOGY**

#### 1. Engineering design

- Reduction in new parts design
- Reduction in the number of drawings through standardization
- Reduction of drafting effort in new shop drawings
- Reduction of number of similar parts, easy retrieval of similar functional parts, and identification of substitute parts
- 2. Layout planning
- Reduction in production floor space required
- Reduced material-handling effo



#### **BENEFITS OF GROUP TECHNOLOGY**

- 3. Specification of equipment, tools, jigs, and fixtures
- Standardization of equipment
- Implementation of cellular manufacturing systems
- Significant reduction in up-front costs incurred in the release of new parts for manufacture
- 4. Manufacturing: process planning
- Reduction in setup time and production time
- Alternative routing leading to improved part routing
- Reduction in number of machining operations and numerical control (NC) programming time
- 5. Manufacturing: production control
- Reduced work-in-process inventory
- Easy identification of bottlenecks
- Improved material flow and reduced warehousing costs
- Improved usage of jigs, fixtures, pallets, tools, material handling, and manufacturing equipment



#### **BENEFITS OF GROUP TECHNOLOGY**

#### 6. Manufacturing: quality control

- Reduction in number of defects leading to reduced inspection effort
- Reduced scrap generation
- Better output quality
- 7. Purchasing
- Coding of purchased part leading to standardized rules for purchasing
- Economies in purchasing possible because of accurate knowledge of raw material requirements
- Simplified vendor evaluation procedures leading to just-in-time purchasing
- 8. Customer service
- Accurate and faster cost estimates
- Efficient spare parts management, leading to better customer service.



