

DEPARTMENT: MECHANICAL SEMESTER: 3
SUBJECT NAME: Engineering Thermodynamics

SUBJECT CODE: 3131905

FACULTY NAME: PROF. KEVAL SUTHAR

Assignment: 2

FIRST LAW OF THERMODYNAMICS

- 1. Explain first law of thermodynamics for a closed system undergoing a change of state and derive energy equation $Q = W + \Delta U$.
- 2. Justify that energy is property of the system.
- 3. Derive the steady flow energy equation for a single stream entering and a single stream leaving a control volume and explain the various terms in it. Also write SFEE for following Applications: (i) Cooling Tower (ii) Centrifugal Pump (iii) Expansion valve of refrigerator (iv) Boiler.
- 4. What is unsteady state flow process? Explain bottle filling process.

SECOND LAW OF THERMODYNAMICS

- 5. Write the limitation of first law of thermodynamics. Explain the second law of thermodynamics by Clausius statement and Kelvin-Plank statement.
- 6. Establish the equivalence of Kelvin-Planck and Clausius statements.
- 7. What is the Carnot cycle? What are the four processes which constitute the cycle?
- 8. Show that all reversible engines operating between the two constant temperature thermal reservoirs have the same efficiency.
- 9. Explain the operation of a cyclic refrigerator plant with a block diagram.
- 10. Evaluate the following statements:
 - I. Heat pump provides a thermodynamic advantage over direct heating.
 - II. Kelvin temperature scale is independent of the peculiar

DEPARTMENT: MECHANICAL SEMESTER: 3
SUBJECT NAME: Engineering Thermodynamics

SUBJECT CODE: 3131905

FACULTY NAME: PROF. KEVAL SUTHAR

characteristics of any particular substance.

- 11. Define following terms
 - (I) Heat Engine
 - (II) Thermal Energy Reservoir
 - (III) Refrigerator

