## Assignment: 1 FLUIDS AND THEIR PROPERTIES

1. Discuss SI, MKS and CGS units of Dynamic Viscosity and Kinematic Viscosity.
2. If the velocity distribution over a plate is given by

$$
u=\frac{5}{6} y-y^{2}
$$

in which $u$ is the velocity in meter per second at a distance $y$ meter above plate, determine the shear stress at $\boldsymbol{y}=\mathbf{0}$ and $\boldsymbol{y}=\mathbf{0} .20 \mathrm{~m}$. Take dynamic viscosity of fluid as 8.63 poises.
3. The space between two square flat parallel plates is filled with oil. Each side of the plate is 50 cm . The thickness of the oil film is 10 cm . The upper plate, which moves at 2.5 meter per sec requires a force of 98.1 N to maintain the speed. Determine:
(i) the dynamic viscosity of the oil in poise and
(ii) the kinematic viscosity of the oil in stokes if the specific gravity of the oil is 0.95 .
4. The dynamic viscosity of oil, used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.45 m and rotates at 200 r.p.m. Calculate the power lost in the bearing for a sleeve length of 90 mm . The thickness of the oil film is 1.85 mm .
5. A vertical gap 2.1 cm wide of infinite extent contains a fluid of viscosity 2.0 Ns $/ \mathrm{m}^{2}$ and specific gravity 0.9 . A metallic plate 1.15 m X 1.15 m X 0.15
$m$ is to be lifted up with a constant velocity of $0.13 \mathrm{~m} / \mathrm{sec}$, through the gap. If the plate is in the middle of the gap, find the force required. The weight of the plate is 35 N .
6. A cylinder of 0.55 m 3 in volume contains air at $45^{0} \mathrm{C}$ and $0.25 \mathrm{~N} / \mathrm{mm}^{2}$ absolute pressure. The air is compressed to $0.25 \mathrm{~m}^{3}$. Find (i) pressure inside the cylinder assuming isothermal process and (ii) pressure and temperature assuming adiabatic process. Take $\mathrm{k}=1.4$.
7. What is the bulk modulus of elasticity of a liquid which is compressed in a cylinder from a volume of $0.0124 \mathrm{~m}^{3}$ at $75 \mathrm{~N} / \mathrm{cm}^{2}$ pressure to a volume of $0.0122 \mathrm{~m}^{3}$ at $145 \mathrm{~N} / \mathrm{cm}^{2}$ pressure?
8. An oil of viscosity 5 poise used for lubrication between a shaft and sleeve. The diameter of the shaft is 0.45 m and it rotates at 210 rpm . Calculate the power lost in oil for a sleeve length of 105 mm . The thickness of oil film is 1.1 mm .

