

CHAPTER – 10

GAME PLAYING :OVERVIEW AND EXAMPLE DOMAIN

Subject : AI
Prepared By:

Asst. Prof. Twinkal Panchal

Code : 2180703 (CSE Department, ACET)

Mini-Max Algorithm

• Mini-max algorithm is a recursive or backtracking algorithm

which is used in decision-making and game theory. It provides

an optimal move for the player assuming that opponent is also

playing optimally.Mini-Max algorithm uses recursion to search

through the game-tree.

• Min-Max algorithm is mostly used for game playing in AI.

Such as Chess, Checkers, tic-tac-toe, go, and various tow-

players game. This Algorithm computes the minimax decision

for the current state.

• In this algorithm two players play the game, one is called

MAX and other is called MIN.

• Both Players of the game are opponent of each other, where

MAX will select the maximized value and MIN will select the

minimized value.

• Minimax is a decision-making algorithm, typically used in a

turn-based, two player games. The goal of the algorithm is to

find the optimal next move.

• In the algorithm, one player is called the maximizer, and the

other player is a minimizer. If we assign an evaluation score to

the game board, one player tries to choose a game state with

the maximum score, while the other chooses a state with the

minimum score.

https://www.baeldung.com/wp-content/uploads/2017/07/minimax.png

EX –

Minimax Decision = MAX{MIN{3,5,10},MIN{2,2}}

= MAX{3,2}

= 3

Alpha-Beta Pruning

• Alpha-beta pruning is a modified version of the minimax

algorithm. It is an optimization technique for the minimax

algorithm.

• As we have seen in the minimax search algorithm that the

number of game states it has to examine are exponential in

depth of the tree. Since we cannot eliminate the exponent, but

we can cut it to half.

• Hence there is a technique by which without checking each

node of the game tree we can compute the correct minimax

decision, and this technique is called pruning.

• This involves two threshold parameter Alpha and beta for

future expansion, so it is called alpha-beta pruning. It is also

called as Alpha-Beta Algorithm.

• Alpha-beta pruning can be applied at any depth of a tree, and

sometimes it not only prune the tree leaves but also entire sub-

tree.

• The two-parameter can be defined as:

1. Alpha: The best (highest-value) choice we have found so

far at any point along the path of Maximizer.

2. Beta: The best (lowest-value) choice we have found so

far at any point along the path of Minimizer.

Iterative Deepening

• The minimax search is then initiated up to a depth of two plies

and to more plies and so on. The name “iterative deepening”

derives its name from the fact that on each iteration, the tree is

searched one level deeper. This method is also called

progressive deepening.

Advantages

1. Find the shortest path to the goal state.

2. The maximum amount of memory used by DFID is

proportional to the number of nodes in that solution path.

Blocks World

• The blocks world has two kinds of components:A table top

with three places p, q, and r

• A variable number of blocks A, B, C, etc., that can be arranged

in places on the table or stacked on one another

• A legal move is to transfer a block from one place or block

onto another place or block, with these restrictions:The moved

block must not have another block on top of it

• No other blocks are moved in the process

Ex-

• Here is a simple blocks world problem:

Components of Planning System

1. Choose the best rule for applying the next rule based on the

best available heuristics.

2. Apply the chosen rule for computing the new problem state.

3. Detect when a solution has been found.

4. Detect dead ends so that they can be abandoned and the

system’s effort is directed in more fruitful directions.

5. Detect when an almost correct solution has been found.

Goal stack planning

• This is one of the most important planning algorithms, which

is specifically used by STRIPS.

• The stack is used in an algorithm to hold the action and satisfy

the goal. A knowledge base is used to hold the current state,

actions.

• Goal stack is similar to a node in a search tree, where the

branches are created if there is a choice of an action.

1. Start by pushing the original goal on the stack. Repeat

this until the stack becomes empty. If stack top is a

compound goal, then push its unsatisfied subgoals on the

stack.

2. If stack top is a single unsatisfied goal then, replace it by an

action and push the action’s precondition on the stack to

satisfy the condition.

3. If stack top is an action, pop it from the stack, execute it and

change the knowledge base by the effects of the action.

4. If stack top is a satisfied goal, pop it from the stack.

Consider the following where wish to proceed from

the start to goal state.

start state:

 ON(B, A) ONTABLE(A) ONTABLE(C) ONTABLE(D)

 ARMEMPTY

 goal state:

 ON(C, A) ON(B,D) ONTABLE(A) ONTABLE(D)

• Initially the goal stack is the goal state.

• We then split the problem into four subproblems

• Two are solved as they already are true in the initial state --

ONTABLE(A), ONTABLE(D).

• With the other two -- there are two ways to proceed:

 ON(C,A) ON(B,D)

 ON(C,A) ON(B,D)

 ONTABLE(A) ONTABLE(D)

 ON(B,D) ON(C,A)

 ON(C,A) ON(B,D)

 ONTABLE(A) ONTABLE(D)

• The first goal ON(C,A) is not true and the only operator that

would make it true is STACK (C,A) which replaces ON(C,A)

giving:

 B<>STACK (C,A) ON(B,D)

 ON(C,A) ON(B,D)

 ONTABLE(A) ONTABLE(D)

• STACK has prerequisites that must be met which means that

block A is clear and the arm is holding block C. So we must

do:

 B<>CLEAR(A) HOLDING(C)

 CLEAR(A) HOLDING(C)

 STACK (C,A)

 ON(B,D)

 ON(C,A) ON(B,D)

 ONTABLE(A) ONTABLE(D)

• Now top goal is false and can only be made true by unstacking

B. This leads to:

 B<>ON(B,A) CLEAR(B)

 ARMEMPTY

 ON(B,A) CLEAR(B)

 ARMEMPTY

 UNSTACK(B,A)

 HOLDING(C)

 CLEAR(A) HOLDING(C)

• The goal stack becomes HOLDING(C) CLEAR(A)

HOLDING(C)

 STACK (C,A)

 ON(B,D)

 ON(C,A) ON(B,D) ONTABLE(A)

 ONTABLE(D)

There are two ways we can achieve HOLDING(C) by using the

operators PICKUP(C) or UNSTACK(C,x) where x is an

unspecified block. This leads to two alternative paths:

 ON(C, x) CLEAR(C)

 ARMEMPTY

 ON(C, x) CLEAR(C)

 ARMEMPTY

 UNSTACK(C,x)

 CLEAR(A) HOLDING(C)

 STACK (C,A)

 ON(B,D)

 ON(C,A) ON(B,D) ONTABLE(A)

 ONTABLE(D)

 ONTABLE(C) CLEAR(C)

 ARMEMPTY

 ONTABLE(C) CLEAR(C)

 ARMEMPTY

 PICKUP(C)

 CLEAR(A) HOLDING(C)

 STACK (C,A)

 ON(B,D)

 ON(C,A) ON(B,D) ONTABLE(A)

 ONTABLE(D)

 CLEAR(x) HOLDING(C)

 CLEAR(x) HOLDING(C)

 STACK (C, x)

 CLEAR(C)

 ARMEMPTY

 The new goal stack becomes: CLEAR(D) HOLDING(B)

 CLEAR(D) HOLDING(B)

 STACK (B, D)

 ONTABLE(C) CLEAR(C) ARMEMPTY

 PICKUP(C)

• At this point the top goal is true and the next and thus the

combined goal leading to the application of STACK (B,D),

which means that the world model becomes

 ONTABLE(A) ONTABLE(C) ONTABLE(D) ON(B,D)

 ARMEMPTY

• This means that we can perform PICKUP(C) and then STACK

(C,A)

• Now coming to the goal ON(B,D) we realise that this has

already been achieved and checking the final goal we derive

the following plan

 UNSTACK(B,A)

 STACK (B,D)

 PICKUP(C)

 STACK (C,A)

Non-linear planning

• This planning is used to set a goal stack and is included in the

search space of all possible subgoal orderings. It handles the

goal interactions by interleaving method.

Advantage

• Non-linear planning may be an optimal solution with respect

to plan length (depending on search strategy used).

Disadvantages

• It takes larger search space, since all possible goal orderings

are taken into consideration.

• Complex algorithm to understand.

