
 

CHAPTER – 4 

USING PREDICATE LOGIC 

 

 

 

Subject : AI 
Prepared By: 

Asst. Prof. Twinkal Panchal 

Code : 2180703 (CSE  Department, ACET) 



 

 

Representing Simple Facts In Logic 

First-Order Logic  

 

• First-order logic is another way of knowledge representation in 

artificial intelligence. It is an extension to propositional logic. 

• FOL is sufficiently expressive to represent the natural 

language statements in a concise way. 

• First-order logic is also known as Predicate logic or First-

order predicate logic. First-order logic is a powerful language 

that develops information about the objects in a more easy way 

and can also express the relationship between those objects. 

• First-order logic (like natural language) does not only assume 

that the world contains facts like propositional logic but also 

assumes the following things in the world: 

 



 

 

• Objects: A, B, people, numbers, colors, wars, theories, 

squares, pits, ...... 

• Relations: It can be unary relation such as: red, round, is 

adjacent, or n-any relation such as: the sister of, brother 

of, has color, comes between 

• Function: Father of, best friend, third inning of, end of, 

...... 

• A quantifier is a language element which generates 

quantification, and quantification specifies the quantity of 

specimen in the universe of discourse. 

• These are the symbols that permit to determine or identify the 

range and scope of the variable in the logical expression.  

1. Universal Quantifier, (for all, everyone, everything) 

2. Existential quantifier, (for some, at least one). 

 



 

 

1. Universal Quantifier 

• Universal quantifier is a symbol of logical representation, 

which specifies that the statement within its range is true for 

everything or every instance of a particular thing. 

• The Universal quantifier is represented by a symbol ∀, which 

resembles an inverted A. 

• Note: In universal quantifier we use implication "→". 

• If x is a variable, then ∀x is read as: 

• For all x 

• For each x 

• For every x. 

Ex-  

 All man drink coffee. 

 ∀x man(x) → drink (x, coffee). 



 

 

2. Existential Quantifier 

• Existential quantifiers are the type of quantifiers, which 

express that the statement within its scope is true for at least 

one instance of something. 

• It is denoted by the logical operator ∃, which resembles as 

inverted E. When it is used with a predicate variable then it is 

called as an existential quantifier. 

• If x is a variable, then existential quantifier will be ∃x or ∃(x). 

And it will be read as: 

• There exists a 'x.' 

• For some 'x.' 

• For at least one 'x.„ 

Ex-  

 Some boys are intelligent. 

 ∃x: boys(x) ∧ intelligent(x) 

 



 

 

1. Marcus was a man. 

 Man(Marcus). 

  

2. Marcus was a Pompeian.  

 Pompeian(Marcus). 

  

3. All Pompeians were Romans.  

 ∀x : Pompeian(x) - > Roman(x). 

 

4. Caesar was a ruler. 

  Ruler(Caesar). 

 

5. All Romans were either loyal to Caesar or hated him.  

 ∀x :Roman(y) -> (LoyalTo(x,Caesar) ∨ Hate(x,Caesar)) 

 



 

 

6. Everyone is loyal to someone . 

 ∀x :-> y : LoyalTo(x,y) 

 

7. People only try to assassinate rulers they aren't loyal to. 

 ∀x:∀y: Person(x) ∧ Ruler(y) ∧ TryAssassinate(x,y)) -> 

 ¬LoyalTo(x,y) 

 

8. Marcus tried to assassinate Caesar . 

 TryAssassinate(Marcus, Caesar). 



 

 

Representing Instance and Isa Relationships 

• Logic statements, containing subject, predicate, and object, 

were explained. Also stated, two  important  attributes 

"instance" and "isa", in  a hierarchical structure. 

 

• Attributes “ IsA ” and “ Instance ” support property 

inheritance and play important role in knowledge 

representation. 

 

• The ways these two attributes "instance" and "isa", are 

logically expressed are shown in the example below : 

 

Ex- 

 

 



 

 

A simple sentence like "Joe is a musician" 
 

• Here "is a" (called  IsA)  is  a  way  of  expressing  what  

logically is called a class-instance relationship between the 

subjects represented by the terms "Joe" and "musician". 

 

• "Joe" is an instance of the class of things called "musician". 

"Joe" plays the role of instance, 

 

• "musician" plays the role of class in that sentence. 

 



 

 

Computable Functions and Predicates 

• It may be necessary to compute functions as part of a fact. In 

these cases a computable predicate is used.  

• A computable predicate may include computable functions 

such as +, -, *, etc.  

• For example, gt(x-y,10) →bigger(x) contains the computable 

predicate gt which performs the greater than function.  

 

Ex- 

1. Marcus was a man. 

 man(Marcus). 

 

2. Marcus was Pompeian. 

  Pompeian(Marcus). 



 

 

3. Marcus was born in 40 A.D. 

  born(Marcus,40). 

 

4. All men are mortal. 

  ∀x: man(x) → mortal(x). 

 

5. All Pompeians died when the volcano erupted in 79 A.D. 

  erupted(volcano,79) /\ ∀x: Pompeian(x) → died(x,79). 

 

6. No mortal lives longer than 150 years. 

  ∀x ∀t1 ∀t2: mortal(x) /\ born(x,t1) /\ gt(t2-t1,150) → 

 dead(x,t2) 



 

 

7. It is now 1991. 

  now=1991. 

 

8. Alive means not dead. 

  ∀x ∀t: [alive(x,t) → ~dead(x,t)] /\ [~dead(x,t) 

 →alive(x,t)] 

 

9. If someone dies, he is dead at all later times. 

 ∀x ∀t1 ∀t2:died(x,t1) /\ gt(t2,t1) →dead(x,t2). 



 

 
Ex - “Is Marcus alive now?”.  

~alive(Marcus,now)  

↓ 8  

~[~dead(Marcus,now)]  

    ↓ negation operation  

dead(Marcus,now)  

↓ 9  

died(Marcus,t1) /\ gt(now,t1)  

↓ 5  

erupted(volcano,79) /\ Pompeian(Marcus) /\ gt(now,79)  

        ↓fact, 2  

gt(now,79)  

↓  

gt(1991,79)  

       ↓ compute gt  

nil 



 

 
Resolution 

• Resolution proves facts and answers queries by refutation. This 

involves assuming the fact/query is untrue and reaching a 

contradiction which indicates that the opposite must be true. The 

wffs must firstly be firstly converted to clause form before using 

resolution.  

 

Algorithm: Converting wffs to Clause Form  

1. Remove all implies, i.e. → by applying the following: a → b is 

equivalent to ~a \/ b.  

 

2. Use the following rules to reduce the scope of each negation 

operator to a single term:  

 • ~(~a) = a  

 • ~(a /\ b) = ~a \/ ~b  

 • ~(a \/ b) = ~a /\ ~b  

  



 

 

 ~∀x: p(x) = ∃x: ~p(x)  

 ~∃x: p(x) = ∀x: ~p(x)  

 

3. Each quantifier must be linked to a unique variable. For 

example, consider ∀x: p(x) \/ ∀x: q(x). In this both quantifiers 

are using the same variable and one must changed to another 

variable: ∀x: p(x) \/ ∀y: q(y).  

 

4. Move all quantifiers, in order, to the left of each wff.  

 

5. Remove existential quantifiers by using Skolem constants or 

functions. For example, ∃x: p(x) becomes p(s1) and ∀x ∃y: 

q(x,y) is replaced with ∀x: q(s2(x), x). 

 

6. Drop the quantifier prefix.  

 



 

 

7. Apply the associative property of disjunctions: a \/ (b \/ c) = 

(a \/ b) \/ c and remove brackets giving a \/ b \/ c. 

 

8. Remove all disjunctions of conjunctions from predicates, i.e. 

create conjunctions of disjunctions instead, by applying the 

following rule iteratively: (a /\ b) \/ c = (a \/ c) /\ (b \/ c).  

 

9. Create a separate clause for each conjunction.  

 

10. Rename variables in the clauses resulting from step 9. to 

ensure that no two clauses refer to the same variable.  



 

 

Algorithm: Resolution  

 

1. Convert the wffs to clause form. 

 

2. Add the fact (or query) P to be proved to the set of clauses:  

 i. Negate P.  

 ii. Convert negated P to clause form.  

 iii. Add the result of ii to the set of clauses.  

 

3. Repeat  

 i. Select two clauses.  

 ii. Resolve the clauses using unification.  

 iii. If the resolvent clause is the empty clause, then a 

 contradiction has been reached. If not add the resolvent to 

 the set of clauses. 



 

 

Consider the following wffs:  

1. man(Marcus). 

 man(Marcus). 

 

2. Pompeian(Marcus). 

 Pompeian(Marcus). 

 

3. ∀x: Pompeian(x) → Roman(x). 

 ~Pompeian(x) \/ Roman(x). 

 

4. ruler(Caesar). 

 ruler(Caesar). 

 

5. ∀x: Roman(x) → loyalto(x,Caesar) \/ hate(x,Caesar). 

 ~Roman(x1) \/ loyalto(x1,Caesar) \/ hate(x1,Caesar). 



 

 

6. ∀x ∃y: loyalto(x,y) 

 loyalto(x2,s1(x2)) 

 

7. ∀x ∀y: person(x) /\ ruler(y) /\ tryassassinate(x,y) →     

~loyalto(x,y) 

 ~person(x3) \/ ~ruler(y) \/ ~tryassassinate(x3,y) \/ 

 ~loyalto(x3,y) 

 

8. tryassassinate(Marcus,Caesar). 

 tryassassinate(Marcus, Caesar). 

 

9. ∀x: man(x) → person(x) 

 ~man(x4) \/ person(x4) 

 

 



 

 

• we want to prove that Marcus hates Caesar.  

 

• We firstly convert this to a wff: hate(Marcus,Caesar). 

 

• The wff is then negated and converted to clause form: 

~hate(Marcus,Caesar).  

 

• This clause is added to the set of clauses and the resolution is 

algorithm is applied: 

 



 

 
~hate(Marcus,Caesar)  

↓ 5  

~Roman(Marcus) \/ loyalto(x1,Caesar)  

↓ 3  

~Pompeian(Marcus) \/ loyalto(Marcus,Caesar)  

↓ 2  

loyalto(Marcus,Caesar)  

↓ 7  

~person(Marcus) \/ ~ruler(Caesar) \/ ~tryassassinate(Marcus,Caesar)  

↓ 4  

~person(Marcus) \/ ~tryassassinate(Marcus,Caesar)  

↓ 8  

~person(Marcus)  

↓ 9  

~man(Marcus)  

↓ 1 



 

 


