
1

NAME:

ENROLLMENT NO:

BATCH NO:

YEAR:

LABORATORY MANUAL

IoT and APPLICATIONS

 SUBJECT CODE: 2180709

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT

 B.E. 8th SEMESTER

Amiraj College of Engineering and
Technology,

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.

Amiraj College of Engineering and Technology,

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.

CERTIFICATE

This is to certify that Mr. / Ms. __

Of class____________________ Enrolment No ___________________________has

Satisfactorily completed the course in ____________________________________as

by the Gujarat Technological University for ____ Year (B.E.) semester___ of Computer

Science and Engineering in the Academic year ______.

Date of Submission:-

Faculty Name and Signature

Subject Teacher

Head of Department

Computer

IoT AND APPLICATIONS

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

B.E. 8th SEMESTER

SUBJECT: IoT AND APPLICATIONS

SUBJECT CODE: 2180709

List Of Experiments

Sr.
No.

Experiments
Date of

Performance.

Date of
submission

Sign Remark

1 Define and Explain Eclipse IoT Project.

2
List and summarize few Eclipse IoT

Projects.

3
Sketch the architecture of IoT Toolkit and

explain each entity in brief.

4
Demonstrate a smart object API gateway

service reference implementation in IoT

toolkit.

5
Write and explain working of an HTTP-

to-CoAP semantic mapping proxy in IoT

toolkit

6 Describe gateway-as-a-service deployment

in IoT toolkit.

IoT AND APPLICATIONS

7
Explain application framework and

embedded software agents for IoT toolkit.

8 Explain working of Raspberry Pi.

9
Connect Raspberry Pi with your existing

system components.

10 Give overview of Zetta.

IoT AND APPLICATIONS

Practical: 1

AIM: Define and Explain Eclipse IOT Project.

Eclipse IoT is an ecosystem of entities (industry and academia) working together to create a

foundation for IoT based exclusively on open source technologies. Their focus remains in the

areas of producing open source implementations of IoT standard technology; creating open

source frameworks and services for utilization in IoT solutions; and developing tools for IoT

developers.

Smarthome Project

SmartHome is one of Eclipse IoT's major services. It aims to create a framework for building

smart home solutions, and its focus remains heterogeneous environments, meaning assorted

protocols and standards integration.

SmartHome provides uniform device and information access to facilitate interaction between

devices. It consists of OSGi bundles capable of deployment in an OSGi runtime, with OSGi

services defined as extension points.

OSGi bundles are Java class groups and other resources, which also include detailed manifest

files. The manifest contains information on file contents, services needed to enhance class

behavior, and the nature of the aggregate as a component. Review an example of a manifest

below −

Bundle-Name : Hi Everyone // Bundle Name

Bundle-SymbolicName : xyz.xyz.hievery1 // Header specifying an identifier

Bundle-Description : A Hi Everyone bundle // Functionality description

Bundle-ManifestVersion : 2 // OSGi specification

Bundle-Version : 1.0.0 // Version number of bundle

Bundle-Activator : xyz.xyz.Activator // Class invoked on bundle activation

Export-Package : xyz.xyz.helloworld;version = "1.0.0" // Java packages available externally

Import-Package : org.osgi.framework;version = "1.3.0" // Java packages needed from

// external source

IoT AND APPLICATIONS

Eclipse SCADA

Eclipse SCADA, another major Eclipse IoT service, delivers a means of connecting various

industrial instruments to a shared communication system. It also post-processes data and sends

data visualizations to operators. It uses a SCADA system with a communication service,

monitoring system, archive, and data visualization.

It aims to be a complete, state-of-the-art open source SCADA system for developing custom

solutions. Its supported technologies and tools include shell applications, JDBC, Modbus TCP

and RTU, Simatic S7 PLC, OPC, and SNMP.

IoT AND APPLICATIONS

Practical: 2

AIM:List and summarize few Eclipse IoT Projects.

AllSeen Alliance (AllJoyn) -- The AllJoyn interoperability framework overseen by the AllSeen

Alliance (ASA) is probably the most widely adopted open source IoT platform around.

Bug Labs dweet and freeboard -- Bug Labs started out making modular, Linux-based Bug

hardware gizmos, but it long ago morphed into a hardware-agnostic IoT platform for the

enterprise. Bug Labs offers a “dweet” messaging and alerts platform and a “freeboard” IoT

design app. Dweet helps publish and describe data using a HAPI web API and JSON. Freeboard

is a drag-and-drop tool for designing IoT dashboards and visualizations.

DeviceHive -- DataArt’s AllJoyn-based device management platform runs on cloud services

such as Azure, AWS, Apache Mesos, and OpenStack. DeviceHive focuses on Big Data analytics

using tools like ElasticSearch, Apache Spark, Cassandra, and Kafka. There’s also a gateway

component that runs on any device that runs Ubuntu Snappy Core.

The modular gateway software interacts with DeviceHive cloud software and IoT protocols, and

is deployed as a Snappy Core service.

DSA -- Distributed Services Architecture facilitates decentralized device inter-communication,

logic, and applications. The DSA project is building a library of Distributed Service

Links(DSLinks), which allow protocol translation and data integration with third party

sources. DSA offers a scalable network topology consisting of multiple DSLinks running on IoT

edge devices connected to a tiered hierarchy of brokers.

Eclipse IoT (Kura) -- The Eclipse Foundation’s IoT efforts are built around its Java/OSGi-

based Kura API container and aggregation platform for M2M applications running on service

gateways. Kura, which is based on Eurotech’s Everywhere Cloud IoT framework, is often

integrated with Apache Camel, a Java-based rules-based routing and mediation engine. Eclipse

IoT sub-projects include the Paho messaging protocol framework, the Mosquitto MQTT stack

for lightweight servers, and the Eclipse SmartHome framework. There’s also a Java-based

implementation of Constrained Application Protocol (CoAP) called Californium, among others.

Kaa -- The CyberVision-backed Kaa project offers a scalable, end-to-end IoT framework

designed for large cloud-connected IoT networks. The platform includes a REST-enabled server

function for services, analytics, and data management, typically deployed as a cluster of nodes

coordinated by Apache Zookeeper. Kaa’s endpoint SDKs, which support Java, C++ and C

https://allseenalliance.org/
http://buglabs.net/
http://buglabs.net/
http://buglabs.net/
http://linuxdevices.linuxgizmos.com/modular-embedded-computer-adds-cortex-a8-soc-android-support/
http://linuxdevices.linuxgizmos.com/modular-embedded-computer-adds-cortex-a8-soc-android-support/
http://devicehive.com/
http://www.iot-dsa.org/
http://iot.eclipse.org/
https://www.eurotech.com/en/press+room/news/?672
https://www.eurotech.com/en/press+room/news/?672
http://camel.apache.org/kura.html
http://www.kaaproject.org/

IoT AND APPLICATIONS

development, handle client-server communications, authentication, encryption, persistence, and

data marshalling. The SDKs contain server-specific, GUI-enabled schemas translated into IoT

object bindings. The schemas govern semantics and abstract the functions of a diverse group of

devices.

Macchina.io -- Macchina.io provides a “web-enabled, modular and extensible” JavaScript and

C++ runtime environment for developing IoT gateway applications running on Linux hacker

boards. Macchina.io supports a wide variety of sensors and connection technologies including

Tinkerforge bricklets, XBee ZB sensors, GPS/GNSS receivers, serial and GPIO connected

devices, and accelerometers.

GE Predix -- GE’s PaaS (Platform as a Service) software for industrial IoT is based on Cloud

Foundry. It adds asset management, device security, and real-time, predictive analytics, and

supports heterogeneous data acquisition, storage, and access. GE Predix, which GE developed

for its own operations, has become one of the most successful of the enterprise IoT platforms,

with about $6 billion in revenues. GE recently partnered with HPE, which will integrate Predix

within its own services.

Home Assistant -- This up and coming grassroots project offers a Python-oriented approach to

home automation. See our recent profile on Home Assistant.

Mainspring -- M2MLabs’ Java-based framework is aimed at M2M communications in

applications such as remote monitoring, fleet management, and smart grids. Like many IoT

frameworks, Mainspring relies heavily on a REST web-service, and offers device configuration

and modeling tools.

Node-RED -- This visual wiring tool for Node.js developers features a browser-based flow

editor for designing flows among IoT nodes. The nodes can then be quickly deployed as

runtimes, and stored and shared using JSON. Endpoints can run on Linux hacker boards, and

cloud support includes Docker, IBM Bluemix, AWS, and Azure.

Open Connectivity Foundation (IoTivity) -- This amalgamation of the Intel and Samsung

backed Open Interconnect Consortium (OIC) organization and the UPnP Forum is working hard

to become the leading open source standards group for IoT. The OCF’s open source IoTivity

project depends on RESTful, JSON, and CoAP.

openHAB -- This open source smart home framework can run on any device capable of running

a JVM. The modular stack abstracts all IoT technologies and components into “items,” and

offers rules, scripts, and support for persistence -- the ability to store device states over time.

OpenHAB offers a variety of web-based UIs, and is supported by major Linux hacker boards.

http://macchina.io/
https://www.ge.com/digital/predix
https://home-assistant.io/
https://www.linux.com/news/home-assistant-python-approach-home-automation-video
http://www.m2mlabs.com/framework
http://nodered.org/
https://openconnectivity.org/
http://www.openhab.org/

IoT AND APPLICATIONS

OpenIoT -- The mostly Java-based OpenIoT middleware aims to facilitate open, large-scale IoT

applications using a utility cloud computing delivery model. The platform includes sensor and

sensor network middleware, as well as ontologies, semantic models, and annotations for

representing IoT objects.

OpenRemote -- Designed for home and building automation, OpenRemote is notable for its

wide-ranging support for smart devices and networking specs such as 1-Wire, EnOcean, xPL,

Insteon, and X10. Rules, scripts, and events are all supported, and there are cloud-based design

tools for UI, installation, and configuration, and remote updates and diagnostics.

https://github.com/OpenIotOrg/openiot
http://www.openremote.org/display/HOME/OpenRemote

IoT AND APPLICATIONS

Practical: 3

AIM: Sketch the architecture of IoT Toolkit and explain each entity in brief.

Architecture of an IOT System -

The different organizations and service providers define, implement and recognize IOT

architecture in different ways. However, the basic architecture of an IOT system remains same

underneath every implementation and business model. The basic architecture of an IOT system

can be understood from a four-layer model as follow -

1) IOT devices and Gateways

2) Communication Network

3) Cloud or Server

4) IOT application

The data is generated, transported, processed and converted to useful insights by an IOT system.

The basic architecture of an IOT system can be represented by the following block diagram -

1) IOT devices - Any device or equipment counts as an IOT device if it satisfies the following

requirements -

IoT AND APPLICATIONS

a) It is capable of communicating with other devices and connect with an internet network. It

must have hardware interfaces and firmware or operating system which can set up

communication with other devices or connect to an internet network.

b) It must be equipped with sensors and/or actuators. The sensors may be collecting static or

dynamic information from the physical world. The information or data collected by the sensor

should be shared or exchanged with a server or cloud. The device may also have actuators to act

upon or according to the processed data or insights sent back by the cloud or server.

c) The device must have a controller or processor to capture data, memory to store it (often

temporarily) and firmware or operating system to process captured data or data received from the

server or cloud.

Most of the IOT devices are built using standard IOT boards. These boards can be

microcontroller boards or daughter boards (single board computers). Some of the popular IOT

boards include Arduino, Raspberry Pi, Beagle Bone, CubieBoard, Pinnocio, Banana Pi and many

others. The boards come with microcontroller or processor integrated with on-board memory

(RAM and ROM), digital and analog GPIO (general purpose input output) pins and various

communication channels (like USB, I2C, SPI, TWI, Ethernet). These boards can be stacked with

other boards or sensors and actuators to form an IOT device (physical device).

The IOT devices can also be built by augmenting network interfaces, RF or Cellular transceivers

with popular microcontrollers or processors. Such IOT devices are custom built for mission

critical applications. Some of the leading microcontroller manufacturers include Texas

Instruments (TI), ARM, Freescale, Intel, Microchip Technology, Atmel and Broadcom.

Based on the hardware design and capabilities, the IOT devices can be broadly categorized as

follow -

1) General Devices

2) Sensing and Actuating Devices

General Devices - A general device is that device under IOT application domain which has

embedded processing and communication capabilities. A general device can process some

information and can connect to a communication network through wired or wireless interfaces.

Basically, these devices only collect data and insights from a cloud or server and operate or

perform data processing accordingly. For example, web controlled industrial machines or home

appliances can be considered as general IOT devices.

IoT AND APPLICATIONS

Sensing and Actuating Devices - The sensing and actuating devices are equipped with sensors

and actuators that enable them to interact and impact the real world. The sensors collect

information pertaining to real physical quantities like temperature, humidity, light intensity,

force, density etc and pass it to the on-board controller/processor. The controller or processor

store the information (temporarily) and pass it on to the communication network. Through

various layers of communication network, it is received at the cloud or server. The cloud process

information and send back useful insights to operate actuators.

Role of Gateways

The IOT device may setup communication with other devices through a gateway or without a

gateway. The gateways are basically required for protocol conversion. Suppose, an IOT device

can send and receive data through Zigbee interface and so will communicate through Zigbee

protocol. The communication network may be able to receive and send data through TCP-IP

protocol. In such case, there will require a gateway which could convert data coming through the

device using Zigbee protocol to data transmission through TCP-IP protocol and data coming

from cloud or server through TCP-IP protocol to Zigbee protocol for reception by the IOT

device. Since the communication network and the on-board network of the IOT device are

different, the gateway act as a two-way bridge between the two networks.

The gateway collects and extract the (sensor) data as per the device protocol, wrap and format it

according to the protocol the communication network be operating at and push data to the

communication network for transmission to the cloud or server. Same way, it receives and

extract data, insights or information from the cloud or server, wrap and format it according to the

network protocol utilized by the on-device network and push the cloud processed data to the IOT

device.

So, a gateway may be required in either of the two scenarios -

1) When the IOT device and the communication network may be operating at different protocols.

Often, these protocols may be at different network layers. Like from the example above, the

Zigbee is a physical layer protocol while the TCP-IP is a transport layer protocol. A wireless

sensor network is another example of device to network communication through gateways.

2) One IOT device may need to communicate with another IOT device operating at different

protocol. For example, a bluetooth device may communicate with other BLE devices over the air

using a gateway.

So, the gateways provide indirect way of communication between device and cloud or one

device and another device. In case of device to device communication, the IOT endpoints

IoT AND APPLICATIONS

(individual IOT devices) may be co-located and communicating at different physical or link

layer protocols (RF protocols like Bluetooth, Wi-Fi, Zigbee, Bluetooth-LE) through a gateway.

Such a gateway is called edge gateway.

An IOT device can also connect to a cloud or other IOT device directly. In such case, the device

and the communication network or the devices communicating with each other must be sharing

and exchanging data using same protocol. So, there would be no need of protocol conversion and

so any gateway. Usually, such device to device or device to network communication is possible

through application layer protocols like Message Queuing Telemetry Transport (MQTT),

Constrained Application Protocol (CoAP), Data Distribution Service (DDS), Advanced Message

Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP). For

example, one ESP8266 IOT board can directly communicate with another ESP8266 board

directly using MQTT protocol. MQTT is an application layer protocol.

The IOT devices (IOT boards) may have a firmware, operating system or real time operating

system to process data, perform messaging and communication, manage data storage and

manage actuator operations. Some of the popular IOT operating systems are Embedded Linux,

TinyOS, Snappy Ubuntu Core, Contiki, FreeRTOS, Mantis, ARM's mbedOS, RIOT OS,

IoT AND APPLICATIONS

Windows 10, Nucleus RTOS, eCOS, SAFE ROTS, Android Things, Green Hills Integrity,

WindRiver VxWorks and BrilloOS.

2) Communication Network - The communication network is generally the typical internet

network having different layers (Physical, Link, Network, Transport and Application) and

communication protocols operating at different layers.

3) Cloud/Server - The cloud or server is the edge of the IOT system. A cloud stores data

collected from different and myriad of IOT devices and perform data mining and analytics to

derive useful insights from it. It is also responsible for managing the connected devices and

networks, manage device to device communications and implement IOT applications by

operating and synchronizing different IOT devices and communication between together. The

cloud may also communicate with other private and public cloud services to enable an IOT

application.

4) IOT Application - The processing, mining and analysis of the data at the cloud is done by the

IOT application. The IOT application is the piece of software at the cloud server which extracts

data, manipulate it to derive useful insights and manage to securely push insights to the target

IOT devices. For example, an IOT application designed for home automation might process data

from sensors and send commands from the cloud to operate home appliances.

IoT AND APPLICATIONS

Practical: 4

AIM: Demonstrate a smart object API gateway service reference

implementation in IoT toolkit.

The Smart Object API is a Semantic Web Linked Data application for the Internet of Things

(IoT). It consists of a URI-Object encapsulation of semantic and real-time data properties

associated with features of interest. The Smart Object architecture roughly conforms to the

Virtual Entity, the Information Model, and the Channel Model set out in the IoT-A Architecture

Reference Model (IoT-A ARM). Supports direct interaction between smart sensors, smart

gateways, cloud/internet services, and user devices. Interaction uses standard web protocols and

formats and is semantically a superset of the CoAP protocol.

Service framework is to include object creation from semantic metadata, semantic database,

discovery, and linkage, API capability keys, and threaded server.

IoT AND APPLICATIONS

Practical- 5

Aim: Write and explain working of an HTTP- to-CoAP semantic mapping

proxy in IoT toolkit

The point of the draft (soon RFC) is to describe how to do HTTP-to-CoAP Mapping to

allow HTTP clients to access a CoAP Server via a proxy. This works under the assumption

that, despite the similarities between CoAP and HTTP, not all browsers will implement

support for it and that some legacy devices will need proxying. Another assumption is that

users will like to use their smartphones with their home sensors. The set up would look like

this:

HTTP-to_CoAP Mapping Scenario with world-class graphics ;)

HTTP-to-CoAP Proxy

A HC proxy is accessed by an HTTP client which wants to access aresource on a CoAP server.

The HC proxy handles the HTTP request by mapping it to the equivalent CoAP request, which is

then forwarded to the appropriate CoAP server. The received CoAP response is then mapped to

an appropriate HTTP response and finally sent back to the originating HTTP client.

See Figure 1 for an example deployment scenario. Here a HC proxy is located at the boundary

of the Constrained Network domain, to avoid sending any HTTP traffic into the Constrained

Network and to avoid any (unsecured) CoAP multicast traffic outside the Constrained Network.

IoT AND APPLICATIONS

A DNS server (not shown) is used by the HTTP Client to resolve the IP address of the HC proxy

and optionally also used by the HC proxy to resolve IP addresses of CoAP servers.

 Constrained Network

 .-------------------.

 / .------. \

 / | CoAP | \

 / |server| \

 || '------' ||

 || ||

 .--------. HTTP Request .------------.CoAPReq .------. ||

| HTTP |---------------->|HTTP-to-CoAP|----------->| CoAP | ||

 | Client |<----------------| Proxy |<-----------|Server| ||

 '--------' HTTP Response '------------' CoAPResp '------' ||

 || ||

 || .------. ||

 || | CoAP | ||

 \ |server| .------. /

\ '------' | CoAP | /

 \ |server| /

 \ '------' /

 '-----------------'

Figure 1: HTTP-To-CoAP Proxy Deployment Scenario

Normative requirements on the translation of HTTP requests to CoAP requests and of the CoAP

responses back to HTTP responses are defined in the basic mapping of request methods and

simple response code mapping between HTTP and CoAP, and leaves many details of the cross-

protocol HC proxy for future definition. This document provides additional guidelines and

more details for the implementation of a HC Proxy,which should be followed in addition to the

normative requirements. Note that the guidelines apply to all forms of an HC proxy (i.e.

Reverse, Forward, Intercepting) unless explicitly otherwise noted.

Proposed Architecture:

IoT AND APPLICATIONS

CoAP – HTTP Mapping: Contains mapping between CoAP and HTTP Request, Response

and Error codes.

CoAP Request - HTTP Response Handler: Implements conversion of CoAP request to HTTP

request and HTTP response to CoAP response with help of “CoAP-HTTP Mapping” module.

HTTP Parser: Implements functionality of parsing HTTP responses.

HTTP Client: Implements functionality of generating HTTP requests.

TCP Client: Implements TCP client to interact with HTTP servers.

IoT AND APPLICATIONS

Practical- 6

Aim: Describe gateway-as-a-service deployment in IoT toolkit.

The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT

connects sensors and devices that record physical observations to applications and services of the

Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the

IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability

with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable

architecture is required to provide connectivity between these silos, enabling discovery of

physical sensors and interpretation of messages between things. This paper proposes a gateway

and Semantic Web enabled IoT architecture to provide interoperability between systems using

established communication and data standards. The Semantic Gateway as Service (SGS) allows

translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol

proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic

Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic

interoperability between messages and support semantic reasoning to obtain higher-level

actionable knowledge from low-level sensor data.

While developing IoT solutions we come across common tasks of connecting “things” to the

cloud. For devices that are not connected to the cloud directly, gateways are used. Such gateway

can be a system on chip (SoC) device: cable modem, set top box, home or industrial automation

gateway, smart phone, home entertainment system, laptop or PC. All these gateway should have

some sort of interface (BLE/ZigBee/etc radios, adapter, digital or analog inputs) that can connect

to the actual device: lamp, controller, sensor, appliance.

Semantic Gateway as Service (SGS)

IoT AND APPLICATIONS

The heart of the semantic IoT architecture is the SGS, which bridges low level raw sensor

information with knowledge centric application services by facilitating interoperability at

messaging protocol and data modeling level. The description below is complemented by Open

Source code available at https://github.com/chheplo/node-sgs which is further being enhanced

and evaluated in the context of CityPulse, a large multi-institutional EU FP7 supported project

along with an effort for additional community engagement and development.

Fig. Gateway as a service architecture

The SGS has three core components as described in Figure:

(1) multi-protocol proxy,

(2) semantic annotation service,

(3) Gateway service interface.

The SGS also has components for required capabilities such as message store and topics router,

which assist multi-protocol proxy and gateway service interface in translation between

messaging protocol. At a high level, SGS architecture connects external sink nodes to the

gateway component using primitive client agents, which support MQTT, XMPP or CoAP. In

contrast, the gateway service interface connects cloud services or other SGSs via REST or

pubsub protocol. Before raw sensor data is forwarded from proxy to gateway interface, it is

annotated using SSN and domain specific ontologies. Although the semantically annotated data

is in RDF format at the multi-protocol proxy, the gateway interface converts the data into JSON,

specifically linked data (JSON-LD) format to support RESTful protocols.

IoT AND APPLICATIONS

Practical- 7

Aim: Explain application framework and embedded software agents for IoT toolkit.

IoT Frameworks

For an IoT framework to be reliable and dependable, some minimal set of measures should be

satisfied to achieve integration and interoperability in IoT. These frameworks span across the IoT

research communities ranging from academic research to organisational research which focus on

integrating things in IoT. Since IoT paradigm itself is still in evolving state, we propose a set of

minimal measures to be satisfied by IoT frameworks for integration. These are:

• Contract decoupling: An IoT system contains heterogeneous devices with disparate

communication protocols. An integration framework should be competent enough to efficiently

handle contract decoupling. Contract decoupling is the ability of service consumers and service

producers toindependently evolve without terminating the contract between them [19]. For

example, a service might be in a JSON format and the service consumer needs an input in XML.

The framework should provide support to transform the message to the format that fulfils the

contract between them.

• Scalability: Given the evolving nature of IoT and the predictions and calculations by [3] and

[2], an efficient integration framework should be scalable and evolvable enough to support the

billions of things soon to be connected to the internet.

• Ease of testing: An integration framework should support ease of testing and debugging. It

should provide support for debugging defects and failures, integration testing, component testing,

system testing, compatibility testing, installation test, functional and non-functional testing,

performance testing and security testing.

 • Ease of development: An IoT integration framework should provide a means of easy

development for developers. The framework should exclude all complexities and provide proper

documentation for non-developers and developers with basic programming knowledge to easily

understand the internals of the framework.

• Fault tolerance: An IoT system has to be dependable and resilient. An intelligent integration

framework should effectively handle faults as IoT devices can eventually toggle between offline

and online states. The framework should provide self-healing mechanisms for transient faults

(network faults, node level faults, etc.), unauthorised access error, server crash failure, omission

failure (when the server does not receive incoming requests from client), timing fault, etc.

IoT AND APPLICATIONS

• Lightweight implementation: Integration frameworks should have a lightweight overhead both

in its development and deployment stage. It should be lightweight and easy to install, uninstall,

activate, deactivate, update, versioning and adaptable.

• Service coordination: Service coordination is the orchestration and choreography of services.

Service orchestration is the coordination of multiple services by a mediator acting as a

centralised component. Service choreography on the other hand, is the chaining of services

together to execute a particular transaction. Integration frameworks should support at least either

or both to achieve reliability.

 • Inter domain operability: The framework should further be extensible to support inter domain

communication. For example, in a smart car domain, an integration framework should also

provide support for communication and interaction with traffic lights, road closure, etc.

belonging to a smart city domain.

Application Framework for IOT

IoT applications have been developed and deployed in several domains such as transportation

and logistics, healthcare, retail and supply chain, industry and environment [5, 6]. Despite their

pervasiveness, developing IoT applications remains challenging and time-consuming. This is

because it involves dealing with several related issues, such as lack of proper identification of

roles of various stakeholders, as well as the lack of appropriate frameworks to address the large-

scale and heterogeneity in IoT systems [7]. Another major challenge is the difficulty in achieving

effective programming abstractions at different technology layers, ranging from device software

to middleware services and end-user applications [8]. These difficulties increase the development

time, resources and delay the deployment of the IoT applications. The complexity of IoT

applications implies that it is inappropriate to develop one in an ad hoc manner and as a result, a

framework is required. An IoT application framework can simplify the difficult process of

coping with heterogeneous devices and software components, overcoming the complexities of

distributed system technologies, handling a high volume of data, designing an architecture for

the application, implementing it in a program, writing specific code to validate the application,

and finally deploying it. A number of researchers have proposed several IoT application

frameworks with each having its own strength and weakness. A study of the various application

development frameworks for IoT is an important step for designing and developing a high-

quality IoT application.

IoT AND APPLICATIONS

Fig. IoT technology Architecture

Agent Toolkits

Currently there are a variety of toolkits available on the market ranging from general agent

development platforms, like AgentBuilder developed by Reticular Systems, to highly specialized

tools, like Excalibur developed by the Technical University of Berlin which allows for the

creation of autonomous agents in a complex computer-game environment. The AgentBuilder

web site2 identifies numerous agent toolkits available on the market.

What are Agent Toolkits?

There is no universal definition of agent toolkits. Each vendor uses its own explanation of the

term. For example, Reticular Systems states that its AgentBuilder toolkit application “is an

integrated tool suite for constructing intelligent software agents”. Authors of the Java Agent

Development Environment (JADE) define their toolkit as “a software framework to make easy

the development of agent application for interoperable multi-agent systems”

An agent toolkit is defined as any software package, application or development environment

that provides agent builders with a sufficient level of abstraction to allow them to implement

intelligent agents with desired attributes, features and rules. Some toolkits may offer only a

platform for agent development, whereas others may provide features for visual programming.

Agent toolkits may also provide an environment for running, monitoring, analyzing and testing

agents, which is very important for both researchers and students learning about agent

technologies. For example, in case of multi-agent systems, an agent development environment

provides a context for agent interaction and sets of governing rules.

Why are Agent Toolkits needed?

IoT AND APPLICATIONS

The reasons why agent developers use agent toolkits is similar to those reasons why software

developers who deal with object-oriented programming (OOP) prefer to use special development

environments like Java VisualAge or Microsoft Visual Basic. First, they provide a certain level

of abstraction in which programmers can develop their objects. Second, they incorporate some

features of visual programming, which saves much time and makes development easier, more

attractive and enjoyable. Third, they offer run-time testing and debugging environments. Finally,

they allow programmers to reuse classes (definitions of objects) created by other programmers.

Unfortunately, existing OOP development platforms and compilers do not support all facets of

agent development. For example, they do not address the implementation of agent features, agent

interaction rules, communication language, and a common knowledge base. This is why a new

suite of agent toolkits has appeared on the market in the last few years: to create a development

environment that fully supports agent creation, testing, and reuse.

Practical- 8

Aim: Explain working of Raspberry Pi.

The Raspberry pi is a single computer board with credit card size, that can be used for many

tasks that your computer does, like games, word processing, spreadsheets and also to play HD

video. It was established by the Raspberry pi foundation from the UK. It has been ready for

public consumption since 2012 with the idea of making a low-cost educational microcomputer

for students and children. The main purpose of designing the raspberry pi board is, to encourage

learning, experimentation and innovation for school level students. The raspberry pi board is a

portable and low cost. Maximum of the raspberry pi computers is used in mobile phones.

Raspberry Pi Technology

The raspberry pi comes in two models, they are model A and model B. The main difference

between model A and model B is USB port. Model a board will consume less power and that

does not include an Ethernet port. But, the model B board includes an Ethernet port and designed

in china. The raspberry pi comes with a set of open source technologies, i.e. communication and

multimedia web technologies.In the year 2014, the foundation of the raspberry pi board launched

the computer module that packages a model B raspberry pi board into module for use as a part of

embedded systems, to encourage their use.

Raspberry Pi Hardware Specifications

The raspberry pi board comprises a program memory (RAM), processor and graphics chip, CPU,

GPU, Ethernet port, GPIO pins, Xbee socket, UART, power source connector. And various

IoT AND APPLICATIONS

interfaces for other external devices. It also requires mass storage, for that we use an SD flash

memory card. So that raspberry pi board will boot from this SD card similarly as a PC boots up

into windows from its hard disk.

Essential hardware specifications of raspberry pi board mainly include SD card containing Linux

OS, US keyboard, monitor, power supply and video cable. Optional hardware

specifications include USB mouse, powered USB hub, case, internet connection, the Model A or

B: USB WiFi adaptor is used and internet connection to Model B is LAN cable.

Memory

The raspberry pi model aboard is designed with 256MB of SDRAM and model B is designed

with 51MB.Raspberry pi is a small size PC compare with other PCs. The normal PCs RAM

memory is available in gigabytes. But in raspberry pi board, the RAM memory is available more

than 256MB or 512MB

CPU (Central Processing Unit)

The Central processing unit is the brain of the raspberry pi board and that is responsible for

carrying out the instructions of the computer through logical and mathematical operations. The

raspberry pi uses ARM11 series processor, which has joined the ranks of the Samsung galaxy

phone.

GPU (Graphics Processing Unit)

The GPU is a specialized chip in the raspberry pi board and that is designed to speed up the

operation of image calculations. This board designed with a Broadcom video core IV and it

supports OpenGL

Ethernet Port

The Ethernet port of the raspberry pi is the main gateway for communicating with additional

devices. The raspberry pi Ethernet port is used to plug your home router to access the internet.

GPIO Pins

The general purpose input & output pins are used in the raspberry pi to associate with the other

electronic boards. These pins can accept input & output commands based on programming

raspberry pi. The raspberry pi affords digital GPIO pins. These pins are used to connect other

electronic components. For example, you can connect it to the temperature sensor to transmit

digital data.

XBee Socket

The XBee socket is used in raspberry pi board for the wireless communication purpose.

IoT AND APPLICATIONS

Power Source Connector

The power source cable is a small switch, which is placed on side of the shield. The main

purpose of the power source connector is to enable an external power source.

UART

The Universal Asynchronous Receiver/ Transmitter is a serial input & output port. That can be

used to transfer the serial data in the form of text and it is useful for converting the debugging

code.

Display

The connection options of the raspberry pi board are two types such as HDMI and

Composite.Many LCD and HD TV monitors can be attached using an HDMI male cable and

with a low-cost adaptor. The versions of HDMI are 1.3 and 1.4 are supported and 1.4 version

cable is recommended. The O/Ps of the Raspberry Pi audio and video through HMDI, but does

not support HDMI I/p. Older TVs can be connected using composite video. When using a

composite video connection, audio is available from the 3.5mm jack socket and can be sent to

your TV. To send audio to your TV, you need a cable which adjusts from 3.5mm to double RCA

connectors.

Model of a Raspberry Pi Board

The Raspberry Pi board is a Broadcom (BCM2835) SOC (system on chip) board. It comes

equipped with an ARM1176JZF-S core CPU, 256 MB of SDRAM and 700 MHz,. The raspberry

pi USB 2.0 ports use only external data connectivity options. The board draws its power from a

micro USB adapter, with min range of 2. Watts (500 MA). The graphics, specialized chip is

designed to speed up the operation of image calculations. This is in built with Broadcom video

core IV cable that is useful if you want to run a game and video through your raspberry pi.

Model A Raspberry Pi Board

Features of Raspberry PI Model A

 The Model A raspberry pi features mainly includes

IoT AND APPLICATIONS

 256 MB SDRAM memory

 Single 2.0 USB connector

 Dual Core Video Core IV Multimedia coprocessor

 HDMI (rev 1.3 & 1.4) Composite RCA (PAL and NTSC) Video Out

 3.5 MM Jack, HDMI, Audio Out

 SD, MMC, SDIO Card slot on board storage

 Linux Operating system

 Broadcom BCM2835 SoC full HD multimedia processor

 8.6cm*5.4cm*1.5cm dimensions

Practical- 9

Aim: Connect Raspberry Pi with your existing system components.

Python is the Pi’s recommended programming language, but Linux is its recommended operating

system. Nearly every flavor of OS that works on Raspberry Pi—Raspbian, Pidora and more—is

a riff on the Linux kernel.

The front of a Raspberry Pi Model B.

IoT AND APPLICATIONS

Right now, there are two versions of the Raspberry Pi for sale—Model A and Model B, though

neither is newer than the other. Model A, which is $25, lacks Ethernet capability, has a single

USB connecter, and 256MB of memory. Model B, which is $35, has double the memory,

Ethernet, and a dual USB connector. The B is not an improvement on A, and in fact was

available first; the A is just a lighter, cheaper version. The Foundation hasn’t ruled out an

eventual, more powerful Model C, but probably not for at least “two to three years.”

Getting Started With Raspberry Pi

Raspberry Pi owes its low price tag to advances in integrated chips. Instead of having a CPU,

a GPU, a USB controller, and memory each on their own individual chips, Raspberry Pi uses

a system-on-a-chip with all those components on a single chip.

Without a lot of chips to take up space, the Pi itself can consist of a printed circuit board which

boots up from an SD memory card. So it’s not just cheap, it’s simple, too.

Still, the $35 price tag is a bit misleading. You can’t just buy a Raspberry Pi and expect it to

work right out of the box. Here are the accessories you’ll need to get up and running:

 A power supply. Raspberry Pi doesn’t come with one, so you’ll need a micro USB

compatible cable in order to plug it into the wall.

 A case. There’s no official one yet, so I put mine in this pink one from Adafruit.

Unfortunately, despite what you may have heard, it does not fit in an Altoids tin.

 An HDMI cable or RCA video lead. You can’t use your Pi without a visual display. You

can either plug it into a computer monitor with HDMI input using an HDMI cable, or you

can plug it into an analogue TV with a standard RCA composite video lead.

 A USB mouse and keyboard. Or else how will you interact with the Pi? Any wired or

wireless mouse and keyboard should do; I’m using wireless Logitech products for both.

 An SD memory card. You’ll need one to boot up the Pi. The Raspberry Pi foundation

recommends at least 4 gigs to start, but as many as 32 if you want.

 A primary computer. I didn’t get that you can’t just get the Pi running without already

owning another computer, Mac or PC. Hopefully you already have one of these, or this

project just got a lot more expensive.

 An SD memory card reader. The Raspberry Pi doesn’t need this, but your primary

computer does so you can transfer installations from it to the Pi. A lot of computers come

with a built-in card reader, but if yours doesn’t, you might want to invest in one.

Now, let’s fast-forward to the day when your Raspberry Pi and all its accessories arrive in the

mail. Here’s what to do, and when to do it.

 Put your Raspberry Pi in its case. Unless it’s very customized, it should continue to have

holes in it for all of the Pi’s inputs.

 Put the Pi aside and go to your primary computer. Insert your SD card and format

it according to the Foundation’s directions. This will install a recovery program on it so

you can save your card even if you break it with your tinkering.

http://downloads.element14.com/raspberryPi1.html
https://www.raspberrypi.org/faqs#generalFuture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/System_on_a_chip
https://www.adafruit.com/products/1067
https://www.raspberrypi.org/faqs#casesAltoids
https://www.raspberrypi.org/faqs#sdSize
https://www.raspberrypi.org/wp-content/uploads/2012/04/quick-start-guide-v2_1.pdf

IoT AND APPLICATIONS

 Download NOOBS on your primary computer. Short for New Out Of Box Software, it’s

the Raspberry Pi Foundation’s fittingly named distro for first-time Pi users. A distro is a

package installation of Linux and its associated software.

 Load your NOOBS download onto the newly formatted SD card.

 Time to get started with the Raspberry Pi. Slide the SD card into the underside of the

Raspberry Pi, and make sure it’s oriented correctly; it’d be bad to break your Pi before

you turn it on!

 Connect it to the power supply, monitor, keyboard, and mouse.

 The Raspberry Pi will boot up and take you the NOOBS screen. If it doesn’t, check your

power supply and HDMI cables and make sure they’re secure.

 Select an OS to install. If you select the default Raspbian, recommended for beginners,

Adafruit has a great tutorial on the process. This install will take a while (20 minutes for

me) so this is a good time to go do something else.

 Once the file copies, you’ll get a notice that says, “Image applied successfully.” Press

return, and the Pi will reboot. Now it will boot into the operating system’s graphical user

interface, which looks a lot like Windows 98.

Now you’re ready to use your Raspberry Pi however you like. You can run programs on it as if it

were any other computer, or you can choose to work from the command line. Since it’s a general

purpose Linux machine, what you do from here is up to you.

A Raspberry Pi Model B all plugged in.

A word of caution, however, from somebody who already made this mistake: don’t delete the

NOOBS copy you downloaded on your primary computer. My husband and I wiped the Pi twice

(and installed operating systems three times) in one night, so I know it saves time to have

everything ready on your computer in case you want to start fresh for any reason.

Pi Project Tutorials for Beginners

https://www.raspberrypi.org/downloads
https://learn.adafruit.com/setting-up-a-raspberry-pi-with-noobs/overview

IoT AND APPLICATIONS

With 512 MB on the Model B, Raspberry Pi isn’t the strongest computer in the world, but it’s

still powerful enough for any project a beginner can think up.

See also: 12 Ways to Make The Most of Raspberry Pi

Here are ten awesome-sounding, relatively simple tutorials for beginners:

Print Server

This is the tutorial we used, so I can vouch for its ease of use. It makes use of CUPS (Common

UNIX Printing System) and basically all you have to do is install it on your SD card and then

teach Raspberry Pi the address of your printer.

XMBC Media Center

This seems to be one of the most popular uses of a Raspberry Pi. Since it is capable of running

XMBC, a program that organizes all of your movies, TV, music, and more into one easy-to-use

cloud-based corral, a Pi makes a perfect hub for streaming your media over your network.

Program Your Own Game

Sure, you could sit around playing Minecraft on your Pi, but you could also fulfill your secret

dream of becoming a video game developer. Programmer Andy Balaam made a tutorial on the

topic so thorough, it takes three hours to watch all of it.

Create an Information Kiosk

Brendan Nee was sick of arriving late for buses, so he programmed his Pi to display real-time

arrival predictions for transit around his house. His step-by-step instructions are great for San

Franciscans, but if you live somewhere else you’ll need to configure for another transit system.

A desktop computer built with a Raspberry Pi.

Build a Pi PC

https://readwrite.com/2014/01/21/raspberry-pi-great-projects#awesm=~otCMIRc8JFCroC
https://www.bartbania.com/index.php/cups-raspberry-printer/?utm_source=feedly
https://lifehacker.com/5929913/build-a-xbmc-media-center-with-a-35-raspberry-pi
https://www.youtube.com/playlist?list=PLgyU3jNA6VjS3ij6ZXbb2x4GdEP3bAWzO
https://arstechnica.com/gaming/2012/11/yes-the-raspberry-pi-will-run-minecraft/
http://blog.bn.ee/2013/01/11/building-a-real-time-transit-information-kiosk-with-raspberry-pi/
http://www.mdpub.com/pi/allinone/index.html

IoT AND APPLICATIONS

You’ve already got the monitor, keyboard, and mouse for your Pi. Why not go the rest of the

way and turn it into a self-contained computer? Mike Davis’s tutorial shows you how to attach

the Pi to the back of the monitor to create a compact desktop PC.

Time Lapse Dolly

Instead of buying an expensive professional camera rig to take time lapse shots, Rick Adam

wrote just 25 lines of Python code to build his own. The results are gorgeous time

lapse movies that show a few hours in a couple of seconds.

Affordable Bitcoin Mining Rig

Instead of buying a $4,000 plus Bitcoin miner, you can set up your Raspberry Pi to do it for just

$83. However, given the amount of energy required to mine Bitcoins, we highly doubt you’ll get

rich off of a Raspberry Pi’s diminutive mining power.

Solar Powered Pi

Save electricity and run your Pi off the power of the sun with this tutorial. The creator says that

this method will usually give you five hours of battery life on your Pi.

Web Server

Design your first website, and get it online, too, by turning your Raspberry Pi into your own

home Web server. So long as you don’t expect your site to get loads of traffic, you can have the

Pi host it instead of a pricey online host.

Raspberry Pi Internet Radio

With 300 lines of Python code, this is the most complicated tutorial on the list, but perhaps with

the most payoff. Set up your Pi to load a playlist of streaming songs as well as display what’s

playing with an LED display.

http://www.instructables.com/id/Raspberry-Pi-powered-time-lapse-dolly-RasPiLapse/?ALLSTEPS
https://www.youtube.com/watch?v=TFSNTvXAEss
http://www.daveconroy.com/beginners-guide-to-turn-your-raspberry-pi-into-an-affordable-bitcoin-mining-rig/
http://www.instructables.com/id/Solar-Powered-Raspberry-Pi/
http://raspberrywebserver.com/serveradmin/get-your-raspberry-pi-web-site-on-line.html
http://usualpanic.com/2013/05/raspberry-pi-internet-radio/

IoT AND APPLICATIONS

Practical- 10

Aim: Give overview of Zetta.

What is Zetta?

Zetta is an open source platform for IoT on which we can build APIs for device interaction. The

platform is built on Node.js. People who are familiar with Node.js can easily get started with

Zetta but, for beginners, a basic understanding of Node.js is required.

Let’s understand the Zetta platform and its characteristics

 Zetta is an open source platform, so anyone can use it free of cost. If you are passionate

about Node.js (https://nodejs.org/), then you can contribute to this open source project.

Currently, the community is small, but it’s growing. Basically, it’s a tool that will help to

generate APIs which we can use to communicate between devices.

 Node.js is basically a server-side JavaScript. Developers can define devices as state

machines using JavaScript. It is also cross-platform and is easily deployable in multiple

cloud platforms.

 Zetta is an API driven platform. Every call is API based so that we can use these APIs for

any other purpose like sending data to other analytics platforms.

 Zetta exposes Websocket endpoints to stream real-time events. This model of merging

Hypermedia with Websocket streaming is acknowledged as Reactive Hypermedia.

https://nodejs.org/

IoT AND APPLICATIONS

 It can support almost all device protocols, and mediate them to HTTP. Connections

between servers are also persistent, so that we can use the seamless services between

servers in the cloud.

 We can create stateless applications in Zetta servers. Applications can be useful to

connect devices, run different queries and interact between them. We can also write

queries and triggers so that whenever new devices are attached, we will be notified.

Figure 1: Zetta architecture

Figure 2: Zetta deployment

Zetta architecture: The Zetta server: The Zetta server is the main component of Zetta, which

contains different sub-components like drivers, scouts, server extensions and apps. A Zetta

server will run on a hardware hub such as BeagleBone Black, Raspberry Pi or Intel Edison. The

server manages interactions between all the sub-components in order to communicate with

devices and generate APIs, by which consumers can interact.

Scouts: Scouts provide a discovery mechanism for devices on the networks or to those which

require system resources to understand and communicate with a specific type of protocol.

Scouts help Zetta to search for devices based on a particular protocol. They also fetch specific

information about devices and whether those devices have already interacted with Zetta or not.

They maintain security credentials and related details while communicating.

Drivers: Drivers are used to represent the devices in a state machine format. They are used for

modelling devices and physical interaction between devices. Device models are used to generate

different API calls.

https://i2.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-1-Zetta-architecture.jpg
https://i1.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-2-Zetta-deployment.jpg

IoT AND APPLICATIONS

Server extensions: These are used for extending functionalities. They are in a pluggable mode,

and deal with API management, adding additional securities, etc.

Registry: This is a database for the Zetta server, which stores information about the devices

connected to the server. It is a persistence layer.

Secure linking: We can establish secure and encrypted tunnelling between different servers while

communicating. This takes care of firewalls and network settings.

Figure 3: Node.js version

Figure 4: Creating the Node.js project

Apps: Apps that are used for different interactions between devices or to fetch and process some

data are created in JavaScript. Apps can be created based on sensor streams or changes in

devices. They can be used to track certain kinds of events that happen in systems.

Zetta deployment: Now let us explore the deployment of Zetta.

1. The Zetta server runs on a hardware hub, which can be Raspberry Pi, Intel Edison or

BeagleBone Black.

2. The hub is connected to devices, and they communicate via HTTP to the specific protocols

used in the deployment.

https://i0.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-3-Node.js-version.jpg
https://i1.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-4-Creating-the-Node.js-project.jpg

IoT AND APPLICATIONS

3. Another similar server runs in the cloud, which has the same Node.js packages that are

available on the Zetta server in the hub. Both the servers are connected.

4.

4. Zetta provides an API at the cloud endpoint so that consumers can use it.

Hardware requirements: Zetta runs with approximately six connected devices per hub, which is

the ideal scenario suggested by it. Hardware requirements are dependent upon the number of

devices, the load of each device and the type of data flowing between them. The ideal minimum

requirement is a 500MHz CPU, 500MB RAM and storage of 1GB-2GB. Zetta requires 500MB

to be able to run. It supports all common operating systems with 32-bit and 64-bit versions.

Zetta installation and demo project: Now let’s take a look at installing Zetta and a ‘Hello

world’ version of the Zetta sample project. Before starting Zetta, here’s a brief introduction to

Node.js.

Node.js

this is built on Chrome’s JavaScript runtime for building scalable and faster applications. It uses

an event-driven, non-blocking IO model. It is popular and very efficient for real-time

applications running across distributed systems. Basically, it’s a server-side JavaScript.

More details about creating projects in Node.js are described in the following steps.

IoT AND APPLICATIONS

Figure 6: Node.js Zetta server status

Figure 5: Installing the Zetta Node.js module

Zetta installation: For Zetta installation, the first thing required is Node.js. As discussed,

download the Node.js installer on to your system. This will install both Node.js and npm (node

package manager). So we don’t need to install anything separately; it’s a complete package. We

can verify the versions by using the commands shown in Figure 3.

Creating a Zetta project

1. Create a new directory to save the project, e.g., demo-zetta.

2. Now cd to that directory. Here, it’s cd demo-zetta.

3. To create a new Node.js project, run the command given below:

npminit

4. You will be asked for basic information about the project. By default, it will choose the value

if you press Enter. If you want to change the value, then do so and press Enterseveral times and

finish the installation. Basically, it will create a package.json file, which contains meta data about

the project and its dependencies.

5. Now we will install the Zetta Node.js module. Here, the -save option adds Zetta to

thepackage.json dependencies list.

https://i2.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-5-Installing-the-Zetta-Node.js-module.jpg
https://i0.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-6-Node.js-Zetta-server-status.jpg

IoT AND APPLICATIONS

npm installzetta -save

After all these steps, we have a basic Zetta project, which contains a package.json file and

a node_modules directory.

Next, let’s configure the Zetta server.

Zetta server configuration

We can install the Zetta server locally as a Zetta hub or in the cloud. We can link both the servers

to access it from everywhere. Here we will install it locally for demo purposes.

1. Go to the demo-zetta directory.

2. Create a new file called index.js, and copy the code given below into it:

varzetta = require(‘zetta’);

zetta()

.name(‘Zetta Demo’)

.listen(1337, function(){

console.log(‘Zetta is running at http://127.0.0.1:1337’);

});

3. Now save and close the file.

After performing the steps given above, we have configured a basic Zetta server hub.

Starting the server

In the demo-zetta directory, enter the command given below:

node index.js

Figure 6 demonstrates the output of the above command. It shows the status of a running server.

Figure 7: The Zetta API call response

Figure 8: Demo Zetta server API response

https://i2.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-7-The-Zetta-API-call-response.jpg
https://i1.wp.com/opensourceforu.com/wp-content/uploads/2017/05/Figure-8-Demo-Zetta-server-API-response.jpg

IoT AND APPLICATIONS

Calling the Zetta API: Now, let’s call the Zetta API. We need to call the server’s root

URL for that. Here we can use the curl command with http://127.0.0.1:1337 or any REST client

tools. In the URL section of the REST client, enter http://127.0.0.1:1337 and submit the request.

Now, in the response (formatted) section, you can see the response (see Figure 7). Check it for

more information.

The Zetta server returns a JSON object that describes the root class of the API. The response

demonstrates the current API state and links to resources given by the API. This is the basic API,

which is not doing anything much as we don’t have devices attached. Once we add the devices,

the API will show more information.

Zetta API is a built-in feature of Zetta, which automatically generates APIs for devices. We can

deploy these APIs in the cloud, which allows any authorised user to communicate with these

devices from anywhere.

