
CHAPTER - 7
POINTERSPOINTERS

Subject : PPS Prepared By:
Asst. Prof. Rupali Patel

Code : 3110003 (CSE Department, ACET)

Pointers
The pointer in C language is a variable which stores the address of
another variable.
This variable can be of type int, char, array, function, or any other
pointer. The size of the pointer depends on the architecture.
However, in 32-bit architecture the size of a pointer is 2 byte.However, in 32-bit architecture the size of a pointer is 2 byte.

Pointers (cont..)
Consider the following example to define a pointer which stores the
address of an integer.
int n = 10;
int * p = &n;
Declaring a pointer
The pointer in c language can be declared using * (asterisk symbol). It isThe pointer in c language can be declared using * (asterisk symbol). It is
also known as indirection pointer used to dereference a pointer.
int *a; //pointer to int
char *c; //pointer to char

Pointer Example
#include<stdio.h>
void main()
{
int number=50;
int *p;
p=&number;p=&number;
printf("Address of p variable is %x \n",p);
printf("Value of p variable is %d \n",*p);
}

Advantages of pointer
1. Pointer reduces the code and improves the performance, it is used

to retrieving strings, trees, etc. and used with arrays, structures, and
functions.

2. We can return multiple values from a function using the pointer.
3. It makes you able to access any memory location in the computer's3. It makes you able to access any memory location in the computer's

memory.

Address Of (&) Operator
The address of operator '&' returns the address of a variable. But, we
need to use %u to display the address of a variable.

#include<stdio.h>
void main()
{{
int number=50;
printf("value of number is %d, address of number is %u",number,
&number);
}

NULL Pointers
It is always a good practice to assign a NULL value to a pointer variable
in case you do not have an exact address to be assigned. This is done at
the time of variable declaration. A pointer that is assigned NULL is
called a null pointer.
#include <stdio.h>
Void main ()Void main ()
{

int *ptr = NULL;
printf("The value of ptr is : %x\n", ptr);

}

Arithmetic Pointer
A pointer in c is an address, which is a numeric value.
Therefore, you can perform arithmetic operations on a pointer just as you
can on a numeric value.
There are four arithmetic operators that can be used on pointers: ++, --,
+, and –.+, and –.

Incrementing a Pointer
We prefer using a pointer in our program instead of an array because the
variable pointer can be incremented, unlike the array name which cannot
be incremented because it is a constant pointer.
The next program increments the variable pointer to access each
succeeding element of the array

Incrementing a Pointer (cont..)
#include <stdio.h>
int main ()
{

int var[] = {10, 100, 200};
int i, *ptr;
ptr = var;
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
{

printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
ptr++;

}
}

Pointer Comparisons
Pointers may be compared by using relational operators, such as ==, <,
and >.
If p1 and p2 point to variables that are related to each other, such as
elements of the same array, then p1 and p2 can be meaningfully
compared.

Pointer Comparisons (cont..)
#include <stdio.h>
void main ()
{

int var[] = {10, 100, 200};
int i, *ptr;
ptr = var;
i = 0;
while (ptr <= &var[2])while (ptr <= &var[2])
{

printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
ptr++;
i++;

}
}

Array of pointers
There may be a situation when we want to maintain an array, which can
store pointers to an int or char or any other data type available.
Following is the declaration of an array of pointers to an integer.
Syntax: int *ptr[3];

Array of pointers (cont..)
#include <stdio.h>
Void main ()
{

int var[3] = {10, 100, 200};
int i, *ptr[3];
for (i = 0; i < 3; i++)
{{

ptr[i] = &var[i];
}
for (i = 0; i < 3; i++)
{

printf("Value of var[%d] = %d\n", i, *ptr[i]);
}

}

Array of pointers to character
#include <stdio.h>
void main ()
{

char *names[] = { "Zara ", "Hina ", "Nuha ","Sara " };
int i = 0;
for (i = 0; i < 4; i++)
{{

printf("Value of names[%d] = %s\n", i, *names[i]);
}

}

Passing pointers to functions
#include <stdio.h>
void salaryhike(int *var, int b)
{

*var = *var+b;
}
int main()
{

int salary=0, bonus=0;int salary=0, bonus=0;
printf("Enter the employee current salary:");
scanf("%d", &salary);
printf("Enter bonus:");
scanf("%d", &bonus);
salaryhike(&salary,bonus);
printf("Final salary: %d", salary);
return 0;

}

Passing array pointer to function
#include <stdio.h>
double getAverage(int *arr, int size);
void main ()
{

int balance[5] = {1000, 2,3, 17,
50};

double avg;

double getAverage(int *arr, int size)
{

int i, sum = 0;
double avg;
for (i = 0; i < size; ++i)
{double avg;

avg = getAverage(balance, 5);
printf("Average value is: %f\n", avg
);
}

{
sum += arr[i];

}
avg = (double)sum / size;
return avg;

}

Return pointer from functions in C
C also allows to return a pointer from a function.
To do so, you would have to declare a function returning a pointer as in
the following example.
int * myFunction()
{{

…….
…….

}

Return pointer from functions in C (cont..)
#include<stdio.h>
int *return_pointer(int *, int);
int main()
{

int i, *ptr;
int arr[5] = {11, 22, 33, 44,

55};

printf("Address of ptr = %u\n\n" ,
ptr);
printf("Value at %u is =%d\n",
ptr, *ptr);
return 0;
}

55};
i = 4;
printf("Address of arr = %u\n",

arr);
ptr = return_pointer(arr, i);

printf("\nAfter incrementing arr
by 4 \n\n");

int *return_pointer(int *p, int n)
{

p = p + n;
return p;

}

Pointer to Pointer
A pointer to a pointer is a form of multiple indirection, or a chain of
pointers. Normally, a pointer contains the address of a variable.
When we define a pointer to a pointer, the first pointer contains the
address of the second pointer, which points to the location that contains
the actual value as shown below.

Pointer to Pointer (cont..)
A variable that is a pointer to a pointer must be declared as such.
This is done by placing an additional asterisk in front of its name. For
example, the following declaration declares a pointer to a pointer of
type int.
int **var;int **var;
When a target value is indirectly pointed to by a pointer to a pointer,
accessing that value requires that the asterisk operator be applied twice,
as is shown next in the example.

Pointer to Pointer (cont..)
#include <stdio.h>
int main ()
{

int var;
int *ptr;
int **pptr;
var = 3000;
ptr = &var;ptr = &var;
pptr = &ptr;
printf("Value of var = %d\n", var);
printf("Value available at *ptr = %d\n", *ptr);
printf("Value available at **pptr = %d\n", **pptr);
return 0;

}

