
CHAPTER - 8
STRUCTURESTRUCTURE

Subject : PPS Prepared By:
Asst. Prof. Rupali Patel

Code : 3110003 (CSE Department, ACET)

Structure
Arrays allow to define type of variables that can hold several data items
of the same kind.
Similarly structure is another user defined data type available in C that
allows to combine data items of different kinds.
A structure is a user defined data type in C.A structure is a user defined data type in C.
A structure isn’t a variable type. Instead, think of it as a frame that holds
multiple variable types. In many ways, a structure is similar to a record
in a database.

How to create a structure?
‘struct’ keyword is used to create a structure.
Following is an example.
struct address
{

char name[50];char name[50];
char street[100];
char city[50];
char state[20];
int pin;

};

How to declare structure variables?
A structure variable can either be
declared with structure
declaration or as a separate
declaration like basic types.
struct Point
{

Another way:
struct Point
{

int x, y;
};

{
int x, y;

} p1;
void main()
{

struct Point p1;
}

How to initialize structure members?
Structure members cannot be initialized with declaration. For example
the following C program fails in compilation.
struct Point
{

int x = 0; // COMPILER ERROR: cannot initialize members here
int y = 0; // COMPILER ERROR: cannot initialize members here

};};
The reason for above error is simple, when a datatype is declared, no
memory is allocated for it. Memory is allocated only when variables are
created.

How to initialize structure members? (cont..)
Structure members can be initialized using curly braces ‘{}’. For
example, following is a valid initialization.

struct Point
{

int x, y; int x, y;
}p1;
int main()
{

p1 = {0, 1};
}

How to access structure elements?
Structure members are accessed using dot (.) operator.
#include<stdio.h>
struct Point
{

int x, y;
}; };
int main()
{

struct Point p1 = {0, 1};
p1.x = 20;
printf ("x = %d, y = %d", p1.x, p1.y);

}

Nested Structure
C provides us the feature of nesting one structure within another
structure by using which, complex data types are created.
For example, we may need to store the address of an entity employee in
a structure. The attribute address may also have the subparts as street
number, city, state, and pin code.
Hence, to store the address of the employee, we need to store the address
of the employee into a separate structure and nest the structure address
into the structure employee.

Nested Structure Example
#include<stdio.h>
struct address
{

char city[20];
int pin;
char phone[14];

};

struct employee emp;
printf("Enter employee
information?\n");
scanf("%s %s %d %s",emp.name,
emp.add.city, emp.add.pin,
emp.add.phone);
printf("Printing the employee };

struct employee
{

char name[20];
struct address add;

};
void main()
{

printf("Printing the employee
information....\n");
printf("name: %s\n City: %s\n
Pincode: %d\n Phone: %s",
emp.name, emp.add.city,
emp.add.pin, emp.add.phone);
}

Array of Structure
An array of structures in C can be defined as the collection of multiple
structures variables where each variable contains information about
different entities.
The array of structures is also known as the collection of structures.

Array of Structure Example
#include<stdio.h>
#include <string.h>
struct student
{
int rollno;
char name[10];
};
int main()

printf("\nEnter Rollno:");
scanf("%d",&st[i].rollno);
printf("\nEnter Name:");
scanf("%s",&st[i].name);
}
printf("\nStudent Information List:");
for(i=0;i<5;i++)
{ int main()

{
int i;
struct student st[5];
printf("Enter Records of 5 students");

for(i=0;i<5;i++)
{

{
printf("Rollno:%d, Name:%s",
st[i].rollno, st[i].name);
}

return 0;
}

Passing structure to function
A structure can be passed to any function from main function or from
any sub function.
Structure definition will be available within the function only.
It won’t be available to other functions unless it is passed to those
functions by value or by address(reference).functions by value or by address(reference).
Else, we have to declare structure variable as global variable. That
means, structure variable should be declared outside the main function.
So, this structure will be visible to all the functions in a C program.

Passing structure to function
#include <stdio.h>
#include <string.h>
struct student
{

int id;
char name[20];
float percentage;

};

func(record);
return 0;

}

void func(struct student record)
{
printf(" Id is: %d \n", record.id);};

void func(struct student record);
int main()
{

struct student record;
record.id=1;
strcpy(record.name, "Raju");
record.percentage = 86.5;

printf(" Id is: %d \n", record.id);
printf(" Name is: %s \n",
record.name);
printf(" Percentage is: %f \n",
record.percentage);
}

Structure using Pointer
To use the array of structure variables efficiently, we use pointers of
structure type. We can also have pointer to a single structure variable,
but it is mostly used when we are dealing with array of structure
variables.
Dot(.) operator is used to access the data using normal structure variable
and arrow (->) is used to access the data using pointer variable.and arrow (->) is used to access the data using pointer variable.

Structure using Pointer Example
#include <stdio.h>
#include <string.h>
struct student
{

int id;
char name[30];
float percentage;

struct student *recd;
recd = &record1;
printf("Records of STUDENT1:
\n");
printf(" Id is: %d \n", recd->id);
printf(" Name is: %s \n", recd-
>name);float percentage;

};
int main()
{

int i;
struct student record1 = {1,

"Raju", 90.5};

>name);
printf(" Percentage is: %f \n\n",
recd->percentage);
return 0;
}

