
CHAPTER - 9
DYNAMIC MEMORY ALLOCATIONDYNAMIC MEMORY ALLOCATION

Subject : PPS Prepared By:
Asst. Prof. Rupali Patel

Code : 3110003 (CSE Department, ACET)

Dynamic Memory Allocation
Since C is a structured language, it has some fixed rules for
programming. One of it includes changing the size of an array. An array
is collection of items stored at continuous memory locations.

As it can be seen that the length (size) of the array above made is 9. But
what if there is a requirement to change this length (size).

Dynamic Memory Allocation (cont..)
 If there is a situation where only 5 elements are needed to be entered in this

array. In this case, the remaining 4 indices are just wasting memory in this
array. So there is a requirement to lessen the length (size) of the array from 9
to 5.

 Take another situation. In this, there is an array of 9 elements with all 9
indices filled. But there is a need to enter 3 more elements in this array. Inindices filled. But there is a need to enter 3 more elements in this array. In
this case 3 indices more are required. So the length (size) of the array needs
to be changed from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.
Therefore, C Dynamic Memory Allocation can be defined as a procedure in
which the size of a data structure (like Array) is changed during the runtime.

Dynamic Memory Allocation (cont..)
C provides some functions to achieve these tasks. There are 4 library functions
provided by C defined under <stdlib.h> header file to facilitate dynamic
memory allocation in C programming.
They are:
1. malloc()
2. calloc()
3. free()3. free()
4. realloc()

C Malloc() Method
“malloc” or “memory allocation” method in C is used to dynamically allocate a
single large block of memory with the specified size. It returns a pointer of type
void which can be cast into a pointer of any form.
Syntax:
ptr = (cast-type*) malloc(byte-size)
Example:Example:
ptr = (int*) malloc(100 * sizeof(int));
Since the size of int is 4 bytes, this statement will allocate 400 bytes of memory.
And, the pointer ptr holds the address of the first byte in the allocated memory.

C Malloc() Method Example
#include <stdio.h>
#include <stdlib.h>
int main()
{

int* ptr;
int n, i;
n = 5;
printf("Enter number of elements:

printf("Memory successfully allocated
using malloc.\n");

for (i = 0; i < n; ++i)
{

ptr[i] = i + 1;
}

printf("The elements of the array are: ");
for (i = 0; i < n; ++i)

%d\n", n);
ptr = (int*)malloc(n * sizeof(int));
if (ptr == NULL)

{
printf("Memory not allocated.\n");

exit(0);
}
else
{

{
printf("%d, ", ptr[i]);

}
}

return 0;
}

C Calloc() Method
“calloc” or “contiguous allocation” method in C is used to dynamically allocate
the specified number of blocks of memory of the specified type. It initializes each
block with a default value ‘0’.
Syntax:
ptr = (cast-type*)calloc(n, element-size);
Example:Example:
ptr = (float*) calloc(25, sizeof(float));
This statement allocates contiguous space in memory for 25 elements each with
the size of the float.. And, the pointer ptr holds the address of the first byte in the
allocated memory.

C Calloc() Method (cont..)
#include <stdio.h>
#include <stdlib.h>
int main()
{

int* ptr;
int n, i;
n = 5;
printf("Enter number of elements: %d\n",

n);

printf("Memory successfully allocated
using calloc.\n");

for (i = 0; i < n; ++i)
{

ptr[i] = i + 1;
}

printf("The elements of the array are: ");
for (i = 0; i < n; ++i) n);

ptr = (int*)calloc(n, sizeof(int));
if (ptr == NULL)

{
printf("Memory not allocated.\n");

exit(0);
}

else
{

for (i = 0; i < n; ++i)
{
printf("%d, ", ptr[i]);
}

}
return 0;

}

C Free() Method
“free” method in C is used to dynamically de-allocate the memory. The
memory allocated using functions malloc() and calloc() is not de-allocated on
their own. Hence the free() method is used, whenever the dynamic memory
allocation takes place. It helps to reduce wastage of memory by freeing it.
Syntax:
free(ptr);free(ptr);

C Free() Method Example
#include <stdio.h>
#include <stdlib.h>
int main()
{

int *ptr, *ptr1;
int n, i;
n = 5;
printf("Enter number of elements:

}
else

{
printf("Memory successfully

allocated using malloc.\n");
free(ptr);
printf("Malloc Memory

successfully freed.\n"); printf("Enter number of elements:
%d\n", n);

ptr = (int*)malloc(n * sizeof(int));
ptr1 = (int*)calloc(n, sizeof(int));
if (ptr == NULL || ptr1 == NULL)
{

printf("Memory not
allocated.\n");

exit(0);

successfully freed.\n");
printf("\nMemory successfully

allocated using calloc.\n");
free(ptr1);
printf("Calloc Memory

successfully freed.\n");
}
return 0;

}

C Realloc() Method
“realloc” or “re-allocation” method in C is used to dynamically change the
memory allocation of a previously allocated memory. In other words, if the
memory previously allocated with the help of malloc or calloc is insufficient,
realloc can be used to dynamically re-allocate memory.
Syntax:
ptr = realloc(ptr, newSize);
where ptr is reallocated with new size 'newSize'.

C Realloc() Method Example
#include <stdio.h>
#include <stdlib.h>
int main()
{

int* ptr;
int n, i;
n = 5;
printf("Enter number of elements: %d\n", n);
ptr = (int*)calloc(n, sizeof(int));
if (ptr == NULL)

{

for (i = 0; i < n; ++i)
{

printf("%d, ", ptr[i]);
}
n = 10;

printf("\n\nEnter the new size of the array: %d\n", n);
ptr = realloc(ptr, n * sizeof(int));

printf("Memory successfully re-allocated using
realloc.\n");
for (i = 5; i < n; ++i)

{ {
printf("Memory not allocated.\n");
exit(0);

}
Else

{
printf("Memory successfully allocated using

calloc.\n");
for (i = 0; i < n; ++i)

{
ptr[i] = i + 1;

}
printf("The elements of the array are: ");

{
ptr[i] = i + 1;

}
printf("The elements of the array are: ");
for (i = 0; i < n; ++i)

{
printf("%d, ", ptr[i]);

}
free(ptr);

}
return 0;

}

