UNIT: FOURIER SERIES

(1)	Define with example: Periodic Function, Fundamental Period.
(2)	Obtain the Fourier series for $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$ in the interval $-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$ and hence deduce that (i) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ (ii) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$ (iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$
(3)	Find the Fourier series expansion of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x} ;-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$
(4)	Find the Fourier series of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}-\boldsymbol{\pi} ;-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$
(5)	Find the Fourier series of $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}^{2}}{2} ;-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$
(6)	Obtain the Fourier series for $\boldsymbol{f}(\boldsymbol{x})=\left(\frac{\pi-x}{2}\right)^{2}$ in the interval $\mathbf{0}<\boldsymbol{x}<2 \boldsymbol{\pi}$ hence prove that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$
(7)	Find the Fourier series for $\boldsymbol{f}(\boldsymbol{x})=\|\boldsymbol{\operatorname { s i n }} \boldsymbol{x}\|$ in $-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$
(8)	Find the Fourier series expansion of $\boldsymbol{f}(\boldsymbol{x})=\sqrt{1-\cos \boldsymbol{x}}$ in the interval, $(\boldsymbol{i})-\boldsymbol{\pi}<\boldsymbol{x}<$ $\boldsymbol{\pi}$ (ii) $\mathbf{0} \leq x \leq 2 \pi$
(9)	Find the Fourier series of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}+\|\boldsymbol{x}\| ;-\boldsymbol{\pi}<\boldsymbol{x}<\boldsymbol{\pi}$
(10)	Find the Fourier Series for the function $f(x)$ given by $f(x)=\left\{\begin{array}{l} 1+\frac{2 x}{\pi} ;-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi} ; \quad 0 \leq x \leq \pi \end{array} \text { hence prove } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \ldots . .=\frac{\pi^{2}}{8}\right.$
(11)	Find the Fourier series expansion of the function $\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{cc}-\boldsymbol{\pi} ;-\boldsymbol{\pi} \leq \boldsymbol{x} \leq \mathbf{0} \\ \boldsymbol{x} ; \quad \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{\pi}\end{array}\right.$ Deduce that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$
(12)	Find the Fourier Series for the function $f(x)$ given by $f(x)=\left\{\begin{array}{c} -\sin \omega t ;-\pi \leq \omega t \leq 0 \\ \sin \omega t ; \quad 0 \leq \omega t \leq \pi \end{array} \text { hence prove } \sum_{\mathrm{n}=2,4,6, \ldots} \frac{1}{\mathbf{n}^{2}-1}=\frac{1}{2}\right.$
(13)	Obtain the Fourier Series for the function $f(x)$ given by $f(x)=\left\{\begin{array}{l} 0 ;-\pi \leq x \leq 0 \\ x^{2} ; \quad 0 \leq x \leq \pi \end{array} \text { hence prove } 1-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\cdots \ldots . .=\frac{\pi^{2}}{12}\right.$
(14)	Find the Fourier series of the Function $f(x)$ when $f(x)$

