

UNIT: FOURIER SERIES	
(1)	Define with example: Periodic Function, Fundamental Period.
(2)	Obtain the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$ and hence deduce that (i) $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (ii) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$ (iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$
(3)	Find the Fourier series expansion of $f(x) = x$; $-\pi < x < \pi$
(4)	Find the Fourier series of $f(x) = x - \pi; -\pi < x < \pi$
(5)	Find the Fourier series of $f(x) = \frac{x^2}{2}; -\pi < x < \pi$
(6)	Obtain the Fourier series for $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 < x < 2\pi$ hence prove that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$
(7)	Find the Fourier series for $f(x) = \sin x $ in $-\pi < x < \pi$
(8)	Find the Fourier series expansion of $f(x) = \sqrt{1 - \cos x}$ in the interval, (i) $-\pi < x < \pi$ (ii) $0 \le x \le 2\pi$
(9)	Find the Fourier series of $f(x) = x + x ; -\pi < x < \pi$
(10)	Find the Fourier Series for the function $f(x)$ given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}; & 0 \le x \le \pi \end{cases}$ hence prove $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$
(11)	Find the Fourier series expansion of the function $f(x) = \begin{cases} -\pi; -\pi \le x \le 0 \\ x; & 0 \le x \le \pi \end{cases}$ Deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$
(12)	Find the Fourier Series for the function $f(x)$ given by $f(x) = \begin{cases} -\sin \omega t; -\pi \le \omega t \le 0\\ \sin \omega t; & 0 \le \omega t \le \pi \end{cases} \text{ hence prove } \sum_{n=2,4,6,\dots} \frac{1}{n^2 - 1} = \frac{1}{2}$
(13)	Obtain the Fourier Series for the function $f(x)$ given by $f(x) = \begin{cases} 0 : -\pi \le x \le 0 \\ x^2; 0 \le x \le \pi \end{cases} \text{ hence prove } 1 - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots = \frac{\pi^2}{12}$
(14)	Find the Fourier series of the Function $f(x)$ when $f(x)$

	k
	-π ο π
	Function having arbitrary periods
(15)	Find the Fourier series for $f(x) = x^2$ in $-2 < x < 2$
(16)	Find the Fourier series to represent the function $f(x) = 2x - x^2$ in (0, 3)
(17)	Find the Fourier series for $f(x) = x^2$ in $(0, 1)$
(18)	Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2$
(19)	Find the Fourier series of the periodic function $f(x) = \pi \sin \pi x$ where 0 < x < 1, $p = 2l = 1$
(20)	Find the Fourier series of the periodic function $f(x) = 2x$ where $-1 < x < 2$, $p = 2l = 2$
(21)	Expand $f(x) = x$ in $-l < x < l$ the Fourier series.
(22)	Find the Fourier Series for the function $f(x)$ given by
	$f(t) = \begin{cases} 0; & -L \le t \le 0\\ E \sin \omega t; & 0 \le t \le L \end{cases}; f\left(\frac{2\pi}{\omega} + t\right) = f(t) \end{cases}$
	Half range Fourier series
(23)	Express sin x as cosine series in $0 < x < \pi$
(24)	Show that when $0 < x < \pi$, $\pi - x = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{\sin 2nx}{n}$
(25)	Find a cosine series for $f(x) = e^x$ in $0 < x < \pi$
(26)	Find hale-range cosine series for $f(x) = e^x$ in $(0, 1)$
(27)	Find the sine series $f(x) = 2x$; $0 < x < 1$ = $4 - 2x$; $1 < x < 2$