

UNIT : LAPLACE TRANSFORM	
	Define Laplace transform: Let $f(t)$ be a given function defined for all $t \ge 0$, then the Laplace transform of $f(t)$ is denoted by $L\{f(t)\}$ or $\overline{f(s)}$ or $F(S)$, and is defined as $L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$, provided the integral exist.
(1)	Prove that $L\{1\} = \frac{1}{s}$ and $\{sinh at\} = \frac{a}{s^2 - a^2}$.
(2)	Prove that $L\{e^{-at}\} = \frac{1}{s+a}, s > -a.$
(3)	Prove that $L\{t^n\} = \frac{n!}{s^{n+1}}$, n being positive integer.
(4)	Find the Laplace transform of $(t) = \begin{cases} 0, 0 < t < \pi \\ sin t, t > \pi \end{cases}$.
(5)	Find the Laplace transform of $(t) = \begin{cases} 0, & 0 \le t < 2\\ 3, & when t \ge 2 \end{cases}$.
(6)	Find the Laplace transform of $t^3 + e^{-3t} + t^{\frac{1}{2}}$.
(7)	Find <i>L{sin</i> 2t cos 2t}.
(8)	Find the Laplace transform of <i>cos²2t</i> .
(9)	Find Laplace transform of $cos^2(at)$, where a is a constant.
(10)	Find the Laplace transform of $f(t) = sinh(\omega t)$, $t \ge 0$.
	FIRST SHIFTING THEOREM:- If $L{f(t)} = F(s)$, then $L{e^{at}f(t)} = F(s-a)$.
(11)	By using first shifting theorem, obtain the value of $L\{(t + 1)^2 e^t\}$.
(12)	Find Laplace transform of $e^{-2t}sin^22t$, where a is a constant.
	MULTIPLIED BY t ⁿ :- If $L{f(t)} = F(s)$, then $L{t^n f(t)} = (-1)^n \frac{d^n}{d^n} F(s) \cdot n = 1, 2, 3$
(13)	Find the value of $L\{t \sin \omega t\}$.
(14)	Find the Laplace transform of $f(t) = t^2 \sinh at$.
(15)	Find the Laplace transform of $t^2 \sin \pi t$.

(16)

(17)

ENGINEERING & TECHNOLOGY	SUBJECT CODE : 3110015 FACULTY NAME : KETAN CHAVDA
Find the Laplace transform of $t^2 \sin 2t$.	
Find the Laplace transform of $t^3 \cosh 2t$	t.
DIV If $L{f(t)} = \overline{f(s)}$ Prove that	VISION BY t:- \overline{s} , and if $L\left\{\frac{f(t)}{t}\right\}$ exists then $L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \overline{f(s)} ds.$
Find $L\left\{\frac{\sin 2t}{t}\right\}$.	

(18)	Find $L\left\{\frac{\sin 2t}{t}\right\}$.
(19)	Find the Laplace transform of $\frac{1-\cos t}{t}$.
(20)	Find the Laplace transform of $\left[\frac{\sin wt}{t}\right]$.
	LAPLACE TRANSFORM OF THE INTEGRAL OF A FUNCTION:-
	If $L{f(t)} = F(s)$, then $L\left\{\int_0^t f(u) du\right\} = \frac{T(s)}{s}$; $s > 0$.
(21)	Find $L\left\{\int_0^t e^{-x} \cos x dx\right\}$.
(22)	Find $L\left\{\int_0^t\int_0^t\sin aududu\right\}$.
(23)	Find the Laplace transform of $\int_0^t e^{-u} \cos u du$.
	If $\overline{f(s)}$ is the Laplace transform of $f(t)$ and $a \ge 0$, then
	prove that $L\{f(t-a)u(t-a)\} = e^{-as}\overline{f(s)}.$
(24)	Find the Laplace transform of $e^{-3t}u(t-2)$.

(25)	Find the Laplace transform of $e^t u(t-2)$.
	LAPLACE TRANSFORM OF PERIODIC FUNCTION :- $L\{f(t)\} = \frac{1}{1-e^{-ps}} \int_0^p e^{-st} f(t) dt; s > 0$, where $f(t)$ is a periodic function with period p that is $f(t + p) = f(t)$.
(26)	Find the Laplace transform of the half wave rectifier $f(t) = \begin{cases} \sin \omega t , 0 < t < \frac{\pi}{\omega} \\ 0, \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} \text{ and } f(t) = f\left(t + \frac{2\pi}{\omega}\right).$
(27)	Find the Laplace transform of $f(t) = sin wt , t \ge 0$.

CONVOLUTION:-
The convolution of f and g is denoted by f * g
And is defined as $f * g = \int_0^t f(u)g(t-u)du$.

Find the value of 1 * 1 where * denote convolution product.
Find the convolution of t and e^t .
INVERSE LAPLACE TRANSFORM
Find $L^{-1}\left\{\frac{6s}{s^2-16}\right\}$.
Find $L^{-1}\left\{\frac{s^3+2s^2+2}{s^3(s^2+1)}\right\}$.
Find $L^{-1}\left\{\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}\right\}$.
Find $L^{-1}\left\{\frac{5s^2+3s-16}{(s-1)(s+3)(s-2)}\right\}$.
Find $L^{-1}\left\{\frac{3s^2+2}{(s+1)(s+2)(s+3)}\right\}$.
Find $L^{-1}\left\{\frac{s^3}{s^4-81}\right\}$.
Find $L^{-1}\left\{-\frac{s+10}{s^2-s-2}\right\}$.
FIRST SHIFTING THEOREM:- If $L^{-1}{F(s)} = f(t)$, then $L^{-1}{F(s-a)} = e^{at}f(t)$.
Find $L^{-1}\left\{\frac{10}{(s-2)^4}\right\}$.
Evaluate $:L^{-1}\left\{\frac{3}{s^2+6s+18}\right\}$.
Find the inverse Laplace transform of $\frac{6+s}{s^2+6s+13}$, use shifting theorem.
Find $L^{-1}\left\{\frac{s+2}{(s^2+4s+5)^2}\right\}$.
Find the inverse Laplace transform of $\frac{5s+3}{(s^2+2s+5)(s-1)}$.
SECOND SHIFTING THEOREM:- If $I = 1 \{ E(x) \} = f(t)$ then $I = 1 \{ e^{-i\xi} E(x) \} = f(t - x) H(t - x)$
Find the inverse Laplace transform of $\frac{se^{-2s}}{s^2+\pi^2}$.

(43)	Find the inverse Laplace transform of $\frac{e^{-4s}(s+2)}{s^2+4s+5}$.
	INVERSE LAPLACE TRANSFORM OF DERIVATIVES: If $L^{-1}{F(s)} = f(t)$, then $L^{-1}{F'(s)} = -tf(t)$.
(44)	Find $L^{-1}\left\{\log\frac{s+a}{s+b}\right\}$.
(45)	Find $L^{-1} \{ \log \frac{s+1}{s-1} \}$.
(46)	Obtain $L^{-1}\left\{\log\frac{1}{s}\right\}$.
(47)	Find the inverse transform of the function $ln\left(1 + \frac{w^2}{s^2}\right)$.
	CONVOLUTION THEOREM:- If F(s) and G(s) are the Laplace transform of the two functions f(t) and g(t), that are sectionally continuous and of order of $e^{\alpha t}$ (α is constant) as $t \to \infty$, then the Laplace transform of the convolution f * g exists when $s > \alpha$ and it is F(s)G(s), that is $L^{-1}{F(s)G(s)} = \int_0^t f(u)g(t-u)du$.
(48)	Using convolution theorem, find the inverse Laplace transform of $\frac{1}{(s^2+a^2)^2}$.
(49)	State convolution theorem and use to evaluate $L^{-1}\left\{\frac{1}{(s^2+\omega^2)^2}\right\}$.
(50)	State the convolution theorem on Laplace transform and using it find $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$.
(51)	State convolution theorem and use to evaluate Laplace inverse of $\frac{a}{s^2(s^2+a^2)}$.
	APPLICATION OF LAPLACE TRANSFORMLaplace transform of derivative:if $f(t)$ is continuous for all $t \ge 0$, and $f'(t)$ is piecewise continuous then $L\{f'(t)\}$ exists,provided $\lim_{t\to\infty} [e^{-st} f(t)] = 0$ and $L\{f'(t)\} = sL\{f(t)\} - f(0) = s\bar{f}(s) - f(0).$ In general $L\{f^n(t)\} = s^n \bar{f}(s) - s^{n-1} f(0) - s^{n-2} f'^{(0)} - \dots - f^{(n-1)}(0).$
(52)	Solve by Laplace transform $y'' + 6y = 1, y(0) = 2, y'(0) = 0.$
(53)	Using Laplace transform solve the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t} \sin t$, where $x(0) = 0$, $x'(0) = 1$.

(54)	Solve the differential equation $\frac{d^2y}{dt^2} + 4y = f(t), y(0) = 0, y'(0) = 1$ by Laplace transform where (i) $f(t) = \begin{cases} 1, 0 < t < 1\\ 0, t > 1 \end{cases}$ and (ii) $f(t) = H(t-2)$.
(55)	Solve the IVP using Laplace transform $y'' + 4y = 0$, $y(0) = 1$, $y'(0) = 6$.
	Solve the simultaneous equation : Using Laplace transform
(56)	$\frac{dx}{dt} - y = e^t , \frac{dy}{dt} + x = \sin t \text{ given } x(0) = 1, y(0) = 0.$
(57)	Using Laplace transform solve the IVP $y'' + y = sin 2t$, $y(0) = 2$, $y'(0) = 1$.
(58)	By Laplace transform solve, $y'' + a^2 y = K \sin at$.
(59)	By using the method of Laplace transform solve the IVP : $y'' + 2y' + y = e^{-t}, y(0) = -1$ and $y'(0) = 1$.

COLLEGE OF ENGINEERING & TECHNOLOGY