CH:COMPLEX NUMBER AND ANALYTIC FUNCTION	
	MODOLUS AND ARGUMENT OF COMPLEX NUMBER
(1)	Find the principal value of $\arg i . \quad \operatorname{Arg} i=\frac{\pi}{2}$]
(2)	Find the principal argument of $z=\frac{-2}{1+i \sqrt{3}}$.
(3)	Determine the modulus and argument of Z^{5} Where $Z=1+i \sqrt{3}$ $\left[\arg \left(z^{5}\right)=-\frac{\pi}{3}\right]$
(4)	To calculate principal value of argument of following complex number a) $\sqrt{3}+i$ b) $-\sqrt{3}+i$ c) $-\sqrt{3}-i$ d) $\sqrt{3}-i$ (a) $\frac{\pi}{6}$ b) $\frac{5 \pi}{6}$ c) $-\frac{5 \pi}{6}$ d) $\frac{-\pi}{6}$
(5)	Find the value of $\operatorname{Re}(f(z))$ and $\operatorname{Im}(f(z))$ at the indicate point Where $f(z)=\frac{1}{1-z}$ at $7+2 i$.
(6)	Is $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) ?$ Justify.
	SOLUTION OF QUADRATIC EQUATION
(7)	Find the roots of the equation $z^{2}+2 i z+(2-4 i)=0$ $[z=1+i \text { or } z=-1-3 i]$
(8)	Solve the Equation of $z^{2}-(5+i) z+8+i=0 .\left[\begin{array}{l}z=3+2 i\end{array}\right.$ or $\left.z=2-i\right]$
(9)	Find the roots of the equation $z^{2}-(3-i) z+(2-3 i)=0$ $[z=2+i \text { or } z=1-2 i]$
	De Moirve's theorem \& ROOTS OF COMPLEX NUMBER
(10)	Find and plot the square root of $4 i F E \square \quad[\sqrt{4 i}= \pm(\sqrt{2}+i \sqrt{2})]$
(11)	Find and plot aii root of $\sqrt[3]{8 i}$.
(12)	Show that if c is any $n^{\text {th }}$ root of Unity other than Unity itself, then $1+c+c^{2}+\ldots \ldots \ldots .+c^{n-1}=0 .$
(13)	Find and plot all the roots of $(1+i)^{1 / 3}$.
(14)	Find real and imaginary part of $(-1-i)^{7}+(-1+i)^{7} .[\operatorname{Re} a l=-\sqrt{2} \quad \operatorname{Im} g=0]$
	ELIMENTRY FUNCTIONS AND EXAMPIE.
(15)	Define 1) Exponential function 2) Trigonometric function 3) Hyperbolic function 4) Logarithmic function 5)Inverse trigonometric and Inverse hyperbolic function 6)Relation between hyperbolic and trigonometric functions 7)Hyperbolic identity.
(16)	Prove that $\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}$.
(17)	Define $\log (x+i y)$ Determine $\log (1-i)$.
(18)	Show that $\cos (i \bar{z})=\overline{\cos (i \bar{z}})$ for all z.
(19)	Expand $\cosh \left(z_{1}+z_{2}\right)$.

(20)	Prove that $\left\|e^{(-2 z)}\right\|<1$ if and only if $\operatorname{Re} z>0$.
(21)	Find all Solution of sinz=2.
(22)	Show that the set of values of $\log \left(i^{2}\right)$ is not the same as the set of values $2 \log i$.
(23)	Find the principal value of $\left[\frac{e}{2}(-1-i \sqrt{3})\right]^{3 \pi i}$.
(24)	Find all root s of the Equation $\log z=\frac{\pi}{2}$.
	FUNCTION OF COMPLEX VARIABLE
(25)	Define 1) Limit of function 2)continuous function 3)Differentiable function.
(26)	Prove $\lim _{z \rightarrow 1} \frac{i z}{3}=\frac{i}{3}$ by definition.
(27)	Use the $\varepsilon-\delta$ definition of limit to Show that where $\lim _{z \rightarrow 3 i}\left(3 x+i y^{2}\right)=9 i$ Where $z=x+i y$.
(28)	Show that the limit of the function does not exist $f(z)= \begin{cases}\frac{\operatorname{lm} g(z)}{\|z\|} & , z \neq 0 \\ 0 & , z=0\end{cases}$
(29)	Find out and (given reason) Where $f(z)$ is continuous at $z=0$ if $f(z)= \begin{cases}\frac{\operatorname{Re}\left(z^{2}\right)}{\|z\|} & , z \neq 0 \\ 0 & , z=0\end{cases}$
(30)	Find the derivative of $\frac{z-i}{z+i}$ at i.
(31)	Show that $f(z)=z \operatorname{Im}(z)$ is differential only at $z=0$ and $f^{\prime}(0)=0$.
(32)	Define 1)Analytic function 2)Entire function 3)C-R Equation 4)Harmonic function.
(33)	State necessary and sufficient Condition for function to be analytics and prove that necessary Condition.
(34)	The function $f(z)=\left\{\begin{array}{ll}\frac{\bar{z}^{2}}{z} & \text {, When } z \neq 0 . \\ 0 & , \text { When } z=0 .\end{array}\right.$ Satisfies C-R equation at the origin but $f^{\prime}(0)$. fails to exist.
(35)	Check Whether the function is analytics or not. $f(z)=\bar{z} .$
(36)	Check Whether the function is analytics or not at any point. $f(z)=2 x+i x y^{2}$
(37)	Check Whether the function is analytics or not at any point. $f(z)=e^{\bar{z}}$
(38)	Verify that $f(z)=z^{2}$ is analytic everywhere.
(39)	Check Whether the function is analytics or not. $f(z)=z^{\frac{5}{2}}$

COLLEGE OF ENGINEERING \& TECHNOLOGY

(40)	Check Whether the function $f(z)=\sin z$ is analytics or not. if analytic find it's derivative.
(41)	Find the all analytic function $f(z)=u+i v$ if $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$.
(42)	Show that if $f(z)$ is analytics in a domain D and $\|f(z)\|=k$ constant in D then show that $f(z)=$ const in D.
(43)	Let a function $f(z)$ be analytic in a domain D prove that $f(z)$ must be constant in D in each of following cases. a) if $f(z)$ is real value for all z in D b) if $\overline{f(z) \text { is analytic in } D .}$
(44)	Define harmonic function. Show that $u=x \sin x \cosh y-y \cos x \sinh y$ is harmonic
(45)	Determine 'a' and 'b' such that $u=a x^{3}+b x y$ is harmonic and find Conjugate harmonic.
(46)	Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic in some domain and find a harmonic Conjugate $v(x, y)$.
(47)	Determine the analytic function whose imaginary part is $e^{x}(x \cos y-y \sin y)$.
(48)	Determine the analytic function whose real part is $e^{2 x}(x \cos 2 y-y \sin 2 y)$.

