AMIRAJ COLLEGE OF ENGINEERING \& TECHNOLOGY

CHAPTER 2 LINEAR DATA STRUCTURE

SUBJECT:DATA STRUCTURE CODE:3130702

CYBERPUNK.RS

Stacks

Data Structure

ARRAY

TOPICS TO BE COVERED

\rightarrow Array:
\rightarrow Representation of arrays

- One dimensional array
- Two dimensional array
\rightarrow Applications of arrays
- Symbol Manipulation (matrix representation of polynomial equation)
- Sparse matrix
\rightarrow Sparse matrix and its representation

REPRESENTATION OF ARRAY

\rightarrow •An array is a group of consective memory locations with same name and data type.
\rightarrow •Simple variable is a single memory location with unique name and a type. But an Array is collection of different adjacent memory locations. All these memory locations have one collective name and type.
\rightarrow •The memory locations in the array are known as elements of array. The total number of elements in the array is called length.
\rightarrow •The elements of array is accessed with reference to its positipn an
is call index or subscript.

ONE DIMENSIONAL ARRAY

\rightarrow A type of array in which all elements are arranged in the form of a list is known as 1-D array or single dimensional array or linear list.
\rightarrow Declaring 1-D Array:

- data_type identifier[length];
- e.g: int marks[5];

Initialization of 1-D array

Elements of an array can be initialized after an array is declared. An array can be declared at Compile time or at Run time

Compile time initialization
int age[5] $=\{20,21,19,23,25\}$

Here first element of age is initialized to 20 , second to 21 and so on.

COLLEGE OF ENGINEERING \& TECHNOLOGY

Run time initialization

$$
\begin{aligned}
& \text { for }(\text { int } \mathrm{i}=0 ; \mathrm{i}<5 ; \mathrm{i}++)\{ \\
& \text { age }[\mathrm{i}]=20 ; \\
& \}
\end{aligned}
$$

TWO DIMENSIONAL ARRAY

\rightarrow Two-D array can be considered as table that consists of rows and columns. Each element in 2-D array is refered with the help of two indexes. One index indicates row and second indicates the column.
\rightarrow Declaring 2-D Array:
Data_type
Identifier[row][colu
mn]; e.g: int
$\operatorname{arr}[4][3] ;$
\rightarrow The two-D array can also be initialized at the time of declaration. Initialization is performed by assigning the initial values in braces seperated by commas.

- Some important points :
\rightarrow oThe elements of each row are enclosed within braces and seperated by comma.
\rightarrow oAll rows are enclosed within braces.
\rightarrow oFor number arrays, if all elements are not specified, the un specified elements are initialized by zero.

Fig: Two-dimension 3×4 array
1 D ARRAY:

APPLICATION OF ARRAY

\rightarrow Symbol Manipulation (matrix representation of polynomial equation)

- Sparse Matrix
\rightarrow Matrix representation of polynomial equation
- We can use array for different kind of operations in polynomial equation such as addition, subtraction, division, differentiation etc...
- We are interested in finding suitable representation for polynomial so that different operations like addition, subtraction etc... can be performed in efficient manner
- Array can be used to represent Polynomial equation

SPARSE MATRIX

\rightarrow An mXn matrix is said to be sparse if "many" of its elements are zero.
\rightarrow A matrix that is not sparse is called a dense matrix.
\rightarrow We can device a simple representation scheme whose space requirement equals the size of the non-zero elements.
$\left[\begin{array}{lllll}0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 5 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 6 & 0 & 0\end{array}\right]$

Row	0	0	1	1	3	3
Column	2	4	2	3	1	2
Value	3	4	5	7	2	6

SPARSE MATRIX

\rightarrow To construct matrix structure from liner representation we need to record
\rightarrow Original row and columns of each non zero entries
\rightarrow No of rows and columns in the matrix
\rightarrow So each element of the array into which the sparse matrix is mapped need to have three fields: row, column and value

COLLEGE OF ENGNEERING \& TECHNOLOGY

SPARSE MATRIX

\rightarrow A super market conducting a study of the mix items purchased by its customers.
\rightarrow For this study data are gathered for the purchase made by 1000 customers.
\rightarrow These data are organized into a matrix, purchases with purchases(i,j) being the quantity of item i purchased by customer j.
\rightarrow Suppose that the super market has an inventory of 10,000 different items.
\rightarrow The purchase matrix is therefore a $10,000 \times 1,000$ matrix
\rightarrow If the average customer buys 20 different items only about 20,000 of 1,00,000,000 matrix entries are nonzero

STACK

STACK DEFINITION \& CONCEPT

———
A stack is a data structure in which items can be inserted only from one end and get items back from the same end. There , the last item inserted into stack, is the the first item to be taken out from the stack. In short its also called Last in First
 out [LIFO].

EXAMPLE OF STACK

STACK OPERATION

- - -

\rightarrow Top: Open end of the stack is called Top, From this end item can be inserted.
\rightarrow Push: To insert an item from Top of stack is called push operation. The push operation change the position of Top in stack.
\rightarrow POP: To put-off, get or remove some item from top of the stack is the pop operation, We can POP only only from top of the stack.
\rightarrow IsEmpty: Stack considered empty when there is no item on Top. IsEmpty operation return true when no item in stack else false.
\rightarrow IsFull: Stack considered full if no other element can be inserted on top of the stack. This condition normally occur when stack implement ed through array.

12
14
8

push 12

PUSH

\rightarrow This procedure inserts an element \mathbf{X} to the top of a stack
\rightarrow Stack is represented by a vector S containing N elements
$\rightarrow \mathrm{A}$ pointer TOP
represents the top element in the stack.
2. [Decrement TOP] $T O P \leftarrow T O P-1$
3. [Return former top element of stack] Return $([$ TTOP +1$])$

1. [check for stack underflow] If \quad TOP $=0$
Then write ('STACK
UNDERELOW')

Underflow

POP

\rightarrow This function removes \& returns the top element from a stack.
\rightarrow Stack is represented by a vector \mathbf{S} containing \mathbf{N} elements.
\rightarrow A pointer TOP
represents the top element in the stack.

PEEP

\rightarrow This function returns the value of the Ith element from the TOP of the stack. The element is not deleted by this function.
\rightarrow Stack is represented by a vector S containing $\quad \mathbf{N}$

1. [check for stack underflow]

Return (0)
2. [Return $I^{\text {th }}$ element from top of the stack]

Return(S[TOP-I+1])

COLLEGE OF ENGINEERING \& TECHNOLOGY

APPLICATION OF STACK

\rightarrow Expression Evaluation

- Stack is used to evaluate prefix, postfix and infix expressions.
\rightarrow Expression Conversion
- An expression can be represented in prefix, postfix or infix notation. Stack can be used to convert one form of expression to another.
\rightarrow Syntax Parsing
- Many compilers use a stack for parsing the syntax of expressions, program blocks etc. before translating into low level code.

\rightarrow Backtracking

_ _ - Suppose we are finding a path for solving maze problem. We choose a path and after following it we realize that it is wrong. Now we need to go back to the beginning of the path to start with new path. This can be done with the help of stack.
\rightarrow Parenthesis Checking

- Stack is used to check the proper opening and closing of parenthesis.
\rightarrow String Reversal
- Stack is used to reverse a string. We push the characters of string one by one into stack and then pop character from stack.
\rightarrow Function Call
- Stack is used to keep information about the active functions or subroutines.

POLISH EXPRESSION

Infix, Postfix and Prefix notations are three different but equivalent ways of writing expressions. It is easiest to demonstrate the differences by looking at examples of operators that take two operands.

COLLEGE OF ENGINEERING \& TECHNOLOGY

INFIX NOTATION

\rightarrow Infix notation: $\mathrm{X}+\mathrm{Y}$
\rightarrow Operators are written in-between their operands. This is the usual way we write expressions. An expression such as A * $(\mathrm{B}+\mathrm{C}) / \mathrm{D}$ is usually taken to mean something like: "First add B and C together, then multiply the result by A , then divide by D to give the final answer."
\rightarrow Infix notation needs extra information to make the order of evaluation of the operators clear: rules built into the language about operator precedence and associativity, and brackets () to allow users to override these rules. For example, the usual rules for associativity say that we perform operations from left to right, so the multiplication by A is assumed to come before the division by D. Similarly, the usual rules for precedence say that we perform multiplication and division before we perform addition and subtraction.

PREFIX NOTATION

- - -

\rightarrow Prefix notation (also known as "Polish notation"): + X Y
\rightarrow Operators are written before their operands. The expressions given above are equivalent to / * A + B C D
\rightarrow As for Postfix, operators are evaluated left-to-right and brackets are superfluous. Operators act on the two nearest values on the right. I have again added (totally unnecessary) brackets to make this clear:
$\rightarrow(/(* \mathrm{~A}(+\mathrm{BC})) \mathrm{D})$
\rightarrow Although Prefix "operators are evaluated left-to-right", they use values to their right, and if these values themselves involve computations then this changes the order that the operators have to be evaluated in. In the example above, although the division is the first operator on the left, it acts on the result of the multiplication, and so the multiplication has to happen before the division (and similarly the addition has to happen before the multiplication).
\rightarrow Because Postfix operators use values to their left, any values involving computations will already have been calculated as we go left-to-right, and so the order of evaluation of the operators is not disrupted in the same way as in Prefix express

POSTFIX NOTATION

\rightarrow Postfix notation (also known as "Reverse Polish notation"): X Y +
\rightarrow Operators are written after their operands. The infix expression given above is equivalent to A B C + * D /
\rightarrow The order of evaluation of operators is always left-to-right, and brackets cannot be used to change this order. Because the " + " is to the left of the "*" in the example above, the addition must be performed before the multiplication.
\rightarrow Operators act on values immediately to the left of them. For example, the " + " above uses the " B " and " C ". We can add (totally unnecessary) brackets to make this explicit:
$\rightarrow\left(\left(\mathrm{A}(\mathrm{BC}+)^{*}\right) \mathrm{D} /\right)$

EXAMPLE

— - -

In all three versions, the operands occur in the same order, and just the operators have to be moved to keep the meaning correct. (This is particularly important for asymmetric operators like

Infix	Postfix	Prefix	Notes
$A * B+C / D$	A B * CD / +	+*AB/CD	multiply A and B, divide C by D , add the results
$A^{*}(B+C) / D$	ABC+*D/	/* $A+B C D$	add B and C, multiply by A , divide by D
A * $(B+C / D)$	A BCD/ + *	* $\mathrm{A}+\mathrm{B} / \mathrm{CD}$	$\begin{aligned} & \text { divide } C \text { by } D, \\ & \text { add } B, \\ & \text { multiply by } A \end{aligned}$

CONVERTING BETWEEN THIS NOTATION

The most straightforward method is to start by inserting all the implicit brackets that show the order of evaluation e.g.:

Infix	Postfix	Prefix
$\left(\left(A^{*} B\right)+(C / D)\right)$	$\left(\left(A^{*}\right)(C D /)+\right)$	$\left(+\left(^{*} A B\right)(/ C D)\right)$
$\left.\left(A^{*}(B+C)\right) / D\right)$	$\left(\left(A(B C+)^{*}\right) D /\right)$	$\left(/\left(^{*} A(+B C)\right) D\right)$
$\left(A^{*}(B+(C / D))\right)$	$\left(A(B(C D /)+)^{*}\right)$	$\left({ }^{*} A(+B(/ C D))\right)$

$((A * B)+(C / D))$

$\left(\left(A^{*}(B+C)\right) / D\right)$

$\left(A^{*}(B+(C / D))\right)$

Operator Precedence Chart

Operator Type	Operator	Associativity	
Primary Expression Operators	() [] . $->$ expr++ expr--	left-to-right	
Unary Operators	$\begin{aligned} & * \&+-!\sim++e x p r--e x p r \text { (typecast) } \\ & \text { sizeof } \end{aligned}$	right-to-left	
Binary Operators	* / \%	left-to-right	
	+ -		
	$\gg \ll$		
	$<><=>=$		
	$==\quad!=$		
	\&		
	ヘ		
	I		
	\& \&		
	I \\|		
Ternary Operator	?:	right-to-left	
Assignment Operators	$=+=-=\star=1=\%=\gg=\ll=1=$	right-to-left	
Comma	,	left-to-right	

INFIX TO POSTFIX

\rightarrow Infix expression can be directly evaluated but the standard practice in CS is that the infix expression converted to postfix form and then the expression is evaluated. During both processes stack is proved to be a useful

1	A		A
2	$*$	$*$	A
3	B	$*$	$A B$
4	+	+	$A B^{*}\left\{p o p\right.$ and printtre* ${ }^{*}$ beforp pushing the $\left.{ }^{+}+\right\}$
5	C	+	$A B^{*} C$
6			$A B^{*} C_{+}$

\rightarrow Example $\mathrm{A} * \mathrm{~B}+\mathrm{C}$ become $\mathrm{AB}{ }^{*} \mathrm{C}+$

current symbol operator stack postix string

 $A B^{*} C+$
ALGORITHM

1. Given a expression in the infix form.
2. Find the highest precedence operator
3.If there are more then one operators with the same precedence check associativity, i.e. pick the left most first.
4.Convert the operator and its operands from infix to postfix A + B --> A B+
5.Repeat steps 2 to 4, until all the operators in the given expression are in the potfix form

INFIX TO PREFIX

- - -

1. Given a expression in the infix form.
2. Find the highest precedence operator
3.If there are more then one operators with the same precedence check associativity, i.e. pick the left most first.
4.Convert the operator and its operands from infix to prefix $A+B-->+A B$
5.Repeat steps 2 to 4, until all the operators in the given expression are in the postfix form

Contin.....

Conversion of Infix to Postfix

Example to Convert Infix to Postfix using stack

$$
\mathbf{a}+\left(\mathbf{b}^{*} \mathbf{c}\right)
$$

Read character	Stack	Output
\mathbf{a}	Empty	a
+	+	\mathbf{a}
$($	$+($	a
b	$+($	ab
$*$	$+(*$	ab
c	$+(*$	abc
$)$	+	abc*
	$9 с$ м305.25	abc*+

RECURSION

- - -

\rightarrow Recursion is one of the most powerful tools in a programming language, but one of the most threatening topics-as most of the beginners and not surprising to even experienced students feel.
\rightarrow When function is called within the same function, it is known as recursion in C. The function which calls the same function, is known as recursive function.
\rightarrow Recursion is defined as defining anything in terms of itself. Recursion is used to solve problems involving iterations, in reverse order.

COLLEGE OF ENGINEERING \& TECHNOLOGY

Recursive Functions

\rightarrow Types of Recursion

－There are two types of
ーーー Recursion
－Direct recursion
－Indirect recursion
\rightarrow Direct Recursion
\rightarrow When in the body of a method t is a call to the same method，we that the method is directly recursive．
\rightarrow There are three types of Direct Recursion
－Linear Recursion
－Binary Recursion
－Multiple Recursion

ALGORITHM TO FIND FACTORIAL USING RECURSION

\rightarrow Given integer number \mathbf{N}
\rightarrow This algorithm computes factorial of N .
\rightarrow Stack S is used to store an activation record associated with each recursive call.
\rightarrow TOP is a pointer to the top element of stack S.
\rightarrow Each activation record contains the current value of \mathbf{N} and the current return address RET_ADDE.
\rightarrow TEMP_REC is also a record which contains two variables PARAM \& ADDRESS.
\rightarrow Initially return address is set to the main calling address. PARAM is set to initial value N .

ALGORITHM:FACTORIAL

```
1. [Save N and return Address]
    CALL PUSH (S, TOP, TEMP_REC)
2. [Is the base criterion found?]
    If N=0
    then FACTORIAL \square 1
    GO TO Step 4
    Else PARAM [ N-1
    ADDRESS [ Step 3
    GO TO Step 1
3. [Calculate N!]
    FACTORIAL[ N * FACTORIAL
4. [Restore previous N}\mathrm{ and return address]
    TEMP_REC [ POP(S,TOP)
    (i.e. PARAM \square N, ADDRESS \square RET_ADDR)
    GO TO ADDRESS
```


TOWER OF HANOI

\rightarrow These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the larger one. There are other variations of the puzzle where the number of disks increase, but the tower count remains the same.
\rightarrow Rules

- The mission is to move all the disks to some another tower without violating the sequence of arrangement. A few rules to be followed for Tower of Hanoi are -
- Only one disk can be moved among the towers at any given time.
- Only the "top" disk can be removed.
- No large disk can sit over a small disk.

College of eiginernig richiology

ALGORITHM FOR TOWER OF HANOI

START

Procedure Hanoi(disk, source, dest, aux)

IF disk $==1$, THEN
move disk from source to dest

ELSE

Hanoi(disk - 1, source, aux, dest)	// Step 1
move disk from source to dest	// Step 2
Hanoi(disk - 1, aux, dest, source)	$/ /$ Step 3

END IF

END Procedure

QUEUE

REPRESENTATION OF QUEUE

———
Queue is an abstract data structure, somewhat similar to stack. In contrast to stack, queue is opened at both end. One end is always used to insert data enqueue and the other is used to remove data dequeue. Queue follows First-In-First-Out methodology, i.e., the data item stored first will be accessed first.

A real world example of queue can be a single-lane one-way road, where the vehicle enters first, exits first. More real-world example can be seen as queues at ticket windows \& bus-stops.

OPERATION ON QUEUE

———
\rightarrow Queue operations may involve initializing or defining the queue, utilizing it and then completing erasing it from memory. Here we shall try to understand basic operations associated with queues -

- enqueue - add store an item to the queue.
- dequeue - remove access an item from the queue.

COLLEGE OF ENGNEERING \& TECHNOLOGY
\rightarrow Few more functions are required to make above mentioned queue operation efficient. These are -

- peek - get the element at front of the queue without removing it.
- isfull - checks if queue is full.
- isempty - checks if queue is empty.
\rightarrow In queue, we always dequeue oraccess data, pointed by front pointer and while enqueing orstoring data in queue we take help of rear pointer.

ENQUEUE OPERATION

\rightarrow As queue maintains two data pointers, front and rear, its operations are comparatively more difficult to implement than stack. The following steps should be taken to enqueue insert data into a queue -

- Step 1 - Check if queue is full.
- Step 2 - If queue is full, produce overflow error and exit.
- Step 3 - If queue is not full, increment rear pointer to point next empty space.
- Step 4 - Add data element to the queue location, where ranarimg
- Step 5 - return success.

ALGORITHM FOR ENQUEUE OPERATION

procedure enqueue (data)
if queue is full
return overflow endif
$r e a r ~ \leftarrow r e a r ~+~ 1 ~$
queue[rear] \leftarrow data
return true
end procedure

DEQUEUE OPERATION

\rightarrow Accessing data from queue is a process of two tasks - access the data where front is pointing and remove the data after access. The following steps are taken to perform dequeue operation -

- Step 1 - Check if queue is empty.
- Step 2 - If queue is empty, produce underflow error and exit.
- Step 3 - If queue is not empty, access data where front is pointing.
- Step 4 - Increment front pointer to point next available data element.
- Step 5 - return success.

COLLEGE OF ENGINEERING \& TECHNOLOGY

ALGORITHM FOR DEQUEUE OPERATION

procedure dequeue
if queue is empty return underflow
end if
data $=$ queue[front]
front \leftarrow front - 1
return true
end procedure
before

after

Queue Dequeue

COLLEGE OF ENGINEERING \& TECHNOLOGY

Perform following operations on queue with size $4 \&$ draw queue after each operation Insert 'A' | Insert 'B' | Insert 'C' | Delete 'A' | Delete 'B' | Insert 'D' | Insert 'E'

CIRCULAR QUEUE

———
\rightarrow Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called 'Ring Buffer'.
\rightarrow In a normal Queue, we can insert elements until queue becomes full. But once queue becomes full, we can not insert the next element even if there is a space in front of
 queue.

OPERATION ON CIRCULAR QUEUE

\rightarrow Front: Get the front item from queue.
\rightarrow Rear: Get the last item from queue.
\rightarrow enQueue(value) This function is used to insert an element into the circular queue. In a circular queue, the new element is always inserted at Rear position.

- Steps:Check whether queue is Full - Check ((rear == SIZE-1 \&\& front ==0) \| (rear == front-1)).
- If it is full then display Queue is full. If queue is not full then, check if (rear ==SIZE $-1 \& \&$ front ! $=0$) if it is true then set rear=0 and insert element.
\rightarrow deQueue() This function is used to delete an element from the circular queue. In a circular queue, the element is always deleted from front position.
- Steps:Check whether queue is Empty means check (front==-1).
- If it is empty then display Queue is empty. If queue is not empty then step 3
- Check if (front==rear) if it is true then set front=rear= -1 else check if (front==size-1), if it is true then set OGY front $=0$ and return the element.

EXAMPLE OF CIRCULAR QUEUE

deQueue()

deQuene)

enQueue(9)

enQueue(20)

enQueue(5)

enQueue(value) - Inserting value into the Circular Queue

\rightarrow In a circular queue, enQueue() is a function which is used to insert an element into the circular queue. In a circular queue, the new element is always inserted at rear position. The enQueue() function takes one integer value as parameter and inserts that value into the circular queue. We can use the following steps to insert an element into the circular queue...

- Step 1 - Check whether queue is FULL. ((rear == SIZE-1 \&\& front == 0) || (front == rear+1))
- Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!'" and terminate the function.
- Step 3 - If it is NOT FULL, then check rear == SIZE - $\mathbf{1} \boldsymbol{\&} \&$ front != $\mathbf{0}$ if it is TRUE, then set rear $=\mathbf{- 1}$.
- Step 4 - Increment rear value by one (rear++), set queue[rear] = value and check 'front == -1' if it is TRUE, then set front $=\mathbf{0}$.

COLLEGE OF ENGINEERING \& TECHNOLOGY

deQueue() - Deleting a value from the Circular Queue

\rightarrow In a circular queue, deQueue() is a function used to delete an element from the circular queue. In a circular queue, the element is always deleted from front position. The deQueue() function doesn't take any value as a parameter. We can use the following steps to delete an element from the circular queue...

- Step 1 - Check whether queue is EMPTY. (front == -1 \&\& rear == 1)
- Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and terminate the function.
- Step 3 - If it is NOT EMPTY, then display queue[front] as deleted element and increment the front value by one (front ++). Then check whether front $==$ SIZE, if it is TRUE, then set front $=\mathbf{0}$. Then check
 TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Circular Queue

\rightarrow We can use the following steps to display the elements of a circular queue...

- Step 1 - Check whether queue is EMPTY. (front == -1)
- Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!' and terminate the function.
- Step 3 - If it is NOT EMPTY, then define an integer variable ' \mathbf{i} ' and set ' $\mathbf{i}=\mathbf{f r o n t}$ '.
- Step 4 - Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until 'i>= rear' becomes FALSE.
- Step 5 - If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.
- Step 6 - Set i to 0 .
- Step 7 - Again display 'cQueue[i]' value and increment \mathbf{i} value by one (i++). Repeat the same until 'i <= rear' becomes FALSE.

COLLEGE OF ENGINEERING \& TECHNOLOGY

PRIORITY QUEUE

- - -

\rightarrow A queue in which we are able to insert \& remove items from any position based on some property (such as priority of the task to be processed) is often referred as priority queue.
\rightarrow Below fig. represent a priority queue of jobs waiting to use a computer.
\rightarrow Priorities are attached with each Job

- Priority 1 indicates Real Time Job
- Priority 2 indicates Online Job
- Priority 3 indicates Batch Processing Job
\rightarrow Therefore if a job is initiated with priority i, it is inserted immediately at the end of list of other jobs with priorities i.
\rightarrow Here jobs are always removed from the front of queue

Priority Queue viewed as a single queue with insertion allowed at any position

Priority Queue viewed as a Viewed as a set of queue

ARRAY REPRESENTATION OF PRIORITY QUEUE

Array Representation of Priority Queue

DOUBLY ENDED QUEUE

- - -

Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are performed at both the ends (front and rear). That means, we can insert at both front and rear positions and can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

1. Input Restricted Double Ended Queue
2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double-ended queue, the insertion operation is performed at only one end and deletion operation is performed at both the ends.

Input Restricted Double Ended Queue

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end and insertion operation is performed at both the ends.

COLLEGE OF ENGNEERING \& TECHNOLOGY

APPLICATION OF QUEUE

\rightarrow Queue of people at any service point such as ticketing etc.
\rightarrow Queue of air planes waiting for landing instructions.
\rightarrow Queue of processes in OS.
\rightarrow Queue is also used by Operating systems for Job Scheduling.
\rightarrow When a resource is shared among multiple consumers. E.g., in case of printers the first one to be entered is the first to be processed.
\rightarrow When data is transferred asynchronously (data not necessarily received at same rate as sent) between two processes. Examples include IO Buffers, pipes, file IO, etc.
\rightarrow Queue is used in BFS (Breadth First Search) algorithm. It helps in traversing a tree or graph.
\rightarrow Queue is used in networking to handle congestion.

LINKED LIST

COLLEGE OF ENGINEERING \& TECHNOLOGY

LINKED LIST

———
When we want to work with an unknown number of data values, we use a linked list data structure to organize that data. The linked list is a linear data structure that contains a sequence of elements such that each element links to its next element in the sequence. Each element in a linked list is called "Node". Stores Address of next node

Data Link

SINGLY LINKED LIST

- - -

Simply a list is a sequence of data, and the linked list is a sequence of data linked with each other. The formal definition of a single linked list is as follows...
\square
n the sequence.
In any single linked list, the individual element is called as "Node". Every "Node" contains two fields, data field, and the next field. The data field is used to store actual value of the node and next field is used to store the address of next node in the sequence.

The graphical representation of a node in a single linked list is as follows...

COLLEGE OF ENGINEERING \& TECHNOLOGY

Node Structure of Singly List

Operations on Single Linked List

\rightarrow The following operations are performed on a Single Linked List

- Insertion
- Deletion
- Display
\rightarrow Before we implement actual operations, first we need to set up an empty list. First, perform the following steps before implementing actual operations.
- Step 1 - Include all the header files which are used in the program.
- Step 2 - Declare all the user defined functions.
- Step 3 - Define a Node structure with two members data and next
- Step 4 - Define a Node pointer 'head' and set it to NULL.
- Step 5 - Implement the main method by displaying operations menu and make suitable function calls in the main method to perform user selected operation.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

\rightarrow We can use the following steps to insert a new node at beginning of the single linked list...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, set newNode \rightarrow next $=$ NULL and head $=$ newNode.
- Step 4 - If it is Not Empty then, set newNode \rightarrow next $=$ head and head $=$ newNode.

Inserting At End of the list

\rightarrow We can use the following steps to insert a new node at end of the single linked list...

- Step 1 - Create a newNode with given value and newNode \rightarrow next as NULL.
- Step 2 - Check whether list is Empty (head == NULL).
- Step 3 - If it is Empty then, set head = newNode.
- Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
- Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list (until temp \rightarrow next is equal to NULL).
- Step 6 - Set temp \rightarrow next $=$ newNode.

COLLEGE OF ENGINEERING \& TECHNOLOGY

Inserting At Specific location in the list (After a Node)

\rightarrow We can use the following steps to insert a new node after a node in the single linked list...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, set newNode \rightarrow next $=$ NULL and head $=$ newNode.
- Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
- Step 5 - Keep moving the temp to its next node until it reaches to the node after which we want to insert the newNode (until temp1 \rightarrow data is equal to location, here location is the node value after which we want to insert the newNode).
- Step 6 - Every time check whether temp is reached to last node or not. If it is reached to last node then display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function. Otherwise move the temp to next node.
- Step 7 - Finally, Set 'newNode $\rightarrow \mathbf{n e x t}=\mathbf{t e m p} \rightarrow$ next' and 'temp \rightarrow next $=$ newnode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

\rightarrow We can use the following steps to delete a node from beginning of the single linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
- Step 4 - Check whether list is having only one node (temp \rightarrow next $==$ NULL)
- Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list conditions)
- Step 6 - If it is FALSE then set head $=\boldsymbol{t e m p} \rightarrow \mathbf{n e x t}$, and delete temp.

COLLEGE OF ENGINEERING \& TECHNOLOGY

Deleting from End of the list

\rightarrow We can use the following steps to delete a node from end of the single linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 'temp1' with head.
- Step 4 - Check whether list has only one Node (temp1 \rightarrow next == NULL)
- Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the function. (Setting Empty list condition)
- Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. Repeat the same until it reaches to the last node in the list. (until temp1 \rightarrow next $==\mathbf{N U L L})$
Step 7 - Finally, Set temp2 \rightarrow next $=$ NULL and delete temp1.

Deleting a Specific Node from the list

\rightarrow We can use the following steps to delete a specific node from the single linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 'temp1' with head.
- Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last node. And every time set 'temp2 $=$ temp1' before moving the 'temp1' to its next node.
- Step 5 - If it is reached to the last node then display 'Given node not found in the list! Deletion not possible!!!'. And terminate the function.
- Step 6 - If it is reached to the exact node which we want to delete, then check whether list is having only one node or not
- Step 7 - If list has only one node and that is the node to be deleted, then set head = NULL and delete temp1 (free(temp1)).
- Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the list (temp1 == head).
- Step 9 - If temp1 is the first node then move the head to the next node (head = head $\rightarrow \mathbf{n e x t}$) and delete temp1.
- Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 \rightarrow next $==$ NULL $)$.
- Step 11 - If temp1 is last node then set temp2 \rightarrow next $=$ NULL and delete temp1 (free(temp1)).
- Step 12 - If temp1 is not first node and not last node then set temp $\mathbf{2} \rightarrow \mathbf{n e x t}=\boldsymbol{t e m p} \mathbf{1} \rightarrow \mathbf{n e x t}$ and (free(temp1)).

COLIEEO F F Eivinererlig q techlolog

DOUBLY LINKED LIST

———
In a single linked list, every node has a link to its next node in the sequence. So, we can traverse from one node to another node only in one direction and we can not traverse back. We can solve this kind of problem by using a double linked list. A double linked list can be defined as follows...

Operations on Double Linked List

In a double linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

COLLEGE OF ENGINEERMG \& TECHNOLOGY

Insertion

In a double linked list, the insertion operation can be performed in three ways as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

\rightarrow We can use the following steps to insert a new node at beginning of the double linked list...

- Step 1 - Create a newNode with given value and newNode \rightarrow previous as NULL.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, assign NULL to newNode \rightarrow next and newNode to head.
- Step 4 - If it is not Empty then, assign head to newNode \rightarrow next and newNode to head.

COLLEGE OF ENGNEERING \& TECHOLOGY

Inserting At End of the list

\rightarrow We can use the following steps to insert a new node at end of the double linked list...

- Step 1 - Create a newNode with given value and newNode \rightarrow next as NULL.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty, then assign NULL to newNode \rightarrow previous and newNode to head.
- Step 4 - If it is not Empty, then, define a node pointer temp and initialize with head.
- Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list (until temp \rightarrow next is equal to NULL).
- Step 6 - Assign newNode to temp \rightarrow next and temp to newNode \rightarrow previous.

COLLEGE OF ENGINEERING \& TECHOLOGY

Inserting At Specific location in the list (After a Node)

\rightarrow We can use the following steps to insert a new node after a node in the double linked list...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, assign NULL to both newNode \rightarrow previous \& newNode \rightarrow next and set newNode to head.
- Step 4 - If it is not Empty then, define two node pointers temp1 \& temp2 and initialize temp1 with head.
- Step 5 - Keep moving the temp1 to its next node until it reaches to the node after which we want to insert the newNode (until temp1 \rightarrow data is equal to location, here location is the node value after which we want to insert the newNode).
- Step 6 - Every time check whether temp1 is reached to the last node. If it is reached to the last node then display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function. Otherwise move the temp1 to next node.
- Step 7 - Assign temp1 \rightarrow next to temp2, newNode to temp $1 \rightarrow$ next, temp1 to newNode \rightarrow previous, temp2 to newNode \rightarrow next and newNode to temp2 \rightarrow previous.

Deletion

In a double linked list, the deletion operation can be performed in three ways as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

\rightarrow We can use the following steps to delete a node from beginning of the double linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
\bullet Step 4 - Check whether list is having only one node (temp \rightarrow previous is equal to temp \rightarrow next)
- Step 5 - If it is TRUE, then set head to NULL and delete temp (Setting Empty list conditions)
- Step 6 - If it is FALSE, then assign temp \rightarrow next to head, NULL to head \rightarrow previous and delete temp.

Deleting from End of the list

\rightarrow We can use the following steps to delete a node from end of the double linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
- Step 4 - Check whether list has only one Node (temp \rightarrow previous and temp \rightarrow next both are NULL)
- Step 5 - If it is TRUE, then assign NULL to head and delete temp. And terminate from the function. (Setting Empty list condition)
- Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node in the list. (until temp \rightarrow next is equal to NULL)
- Step 7 - Assign NULL to temp \rightarrow previous \rightarrow next and delete temp.

Deleting a Specific Node from the list

\rightarrow We can use the following steps to delete a specific node from the double linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.
- Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or to the last node.
- Step 5 - If it is reached to the last node, then display 'Given node not found in the list! Deletion not possible!!!' and terminate the fuction.
- Step 6 - If it is reached to the exact node which we want to delete, then check whether list is having only one node or not
- Step 7 - If list has only one node and that is the node which is to be deleted then set head to NULL and delete temp (free(temp)).
- Step 8 - If list contains multiple nodes, then check whether temp is the first node in the list (temp == head).
- Step 9 - If temp is the first node, then move the head to the next node (head $=$ head \rightarrow next), set head of previous to NULL (head \rightarrow previous = NULL) and delete temp.
\rightarrow Step 10 - If temp is not the first node, then check whether it is the last node in the list ($\boldsymbol{t} \mathbf{t m p} \rightarrow \mathbf{n e x t}==\mathbf{N U L L}$).
- Step 11 - If temp is the last node then set temp of previous of next to NULL (temp \rightarrow previous \rightarrow next $=$ NULL) and delete temp (free(temp)).
- Step 12 - If temp is not the first node and not the last node, then set temp of previous of next to temp of next (temp \rightarrow previous \rightarrow next $=$ temp \rightarrow next), temp of next of previous to temp of previous (temp \rightarrow next \rightarrow previous $=$ temp \rightarrow previous) and delete temp (free(temp)).

CIRCULAR LINKED LIST

———

In single linked list, every node points to its next node in the sequence and the last node points NULL. But in circular linked list, every node points to its next node in the sequence but the last node points to the first node in the list.

A circular linked list is a sequence of elements in which every element has a link to its next element in the sequence and the last element has a link to the first element.

That means circular linked list is similar to the single linked list except that the last node points to the first node in the list

COLLEGE OF ENGNEERING \& TECHNOLOGY

Operations

In a circular linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

Before we implement actual operations, first we need to setup empty list. First perform the following steps before implementing actual operations.

- Step 1 - Include all the header files which are used in the program.
- Step 2 - Declare all the user defined functions.
- Step 3 - Define a Node structure with two members data and next
- Step 4 - Define a Node pointer 'head' and set it to NULL.
- Step 5 - Implement the main method by displaying operations menu and make suitable fun method to perform user selected operation.

Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

\rightarrow We can use the following steps to insert a new node at beginning of the circular linked list...

- Step 1-Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, set head = newNode and newNode \rightarrow next $=$ head .
- Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.
- Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until 'temp \rightarrow next $==$ head').
- Step 6 - Set 'newNode \rightarrow next $=$ head', 'head $=$ newNode' and 'temp \rightarrow next $=$ head'.

COLLEGE OF ENGINEERING \& TECHOLOGY

Inserting At End of the list

\rightarrow We can use the following steps to insert a new node at end of the circular linked list...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL).
- Step 3 - If it is Empty then, set head = newNode and newNode \rightarrow next $=$ head.
- Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
- Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list (until temp \rightarrow next $==$ head).
- Step 6 - Set temp \rightarrow next $=$ newNode and newNode \rightarrow next $=$ head.

Inserting At Specific location in the list (After a Node)

\rightarrow We can use the following steps to insert a new node after a node in the circular linked list...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether list is Empty (head == NULL)
- Step 3 - If it is Empty then, set head = newNode and newNode \rightarrow next $=$ head.
- Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
- Step 5 - Keep moving the temp to its next node until it reaches to the node after which we want to insert the newNode (until temp $1 \rightarrow$ data is equal to location, here location is the node value after which we want to insert the newNode).
- Step 6 - Every time check whether temp is reached to the last node or not. If it is reached to last node then display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function. Otherwise move the temp to next node.
- Step 7 - If temp is reached to the exact node after which we want to insert the newNode then check whether it is last node (temp \rightarrow next $==$ head).
- Step 8 - If temp is last node then set temp \rightarrow next $=$ newNode and newNode \rightarrow next $=$ head.
- Step 8 - If temp is not last node then set newNode \rightarrow next $=\boldsymbol{t e m p} \rightarrow$ next and temp \rightarrow next $=$ newNode. IECHNOLOGY

Deletion

In a circular linked list, the deletion operation can be performed in three ways those are as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

\rightarrow We can use the following steps to delete a node from beginning of the circular linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize both 'temp1' and 'temp2' with head.
- Step 4 - Check whether list is having only one node (temp1 \rightarrow next $==$ head)
- Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list conditions)
- Step 6 - If it is FALSE move the temp1 until it reaches to the last node. (until temp1 \rightarrow next $==$ head)
\bullet Step 7 - Then set head $=$ temp2 \rightarrow next, temp1 \rightarrow next $=$ head and delete temp2.
COLLEGE OF ENGINEERING \& TECHNOLOGY

Deleting from End of the list

\rightarrow We can use the following steps to delete a node from end of the circular linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 'temp1' with head.
- Step 4 - Check whether list has only one Node (temp1 \rightarrow next == head)
- Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from the function. (Setting Empty list condition)
- Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. Repeat the same until temp1 reaches to the last node in the list. (until temp1 \rightarrow next $==$ head)
Step 7 - Set temp $\mathbf{2} \rightarrow \mathbf{n e x t}=$ head and delete temp1.

COLLEGE OF ENGNEERING \& TECHOLOGY

Deleting a Specific Node from the list

\rightarrow We can use the following steps to delete a specific node from the circular linked list...

- Step 1 - Check whether list is Empty (head == NULL)
- Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.
- Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 'temp1' with head.
- Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next node.
- Step 5 - If it is reached to the last node then display 'Given node not found in the list! Deletion not possible!!!'. And terminate the function.
- Step 6 - If it is reached to the exact node which we want to delete, then check whether list is having only one node $($ temp $1 \rightarrow$ next $==$ head $)$
- Step 7 - If list has only one node and that is the node to be deleted then set head = NULL and delete temp1 (free(temp1)).
- Step 8 - If list contains multiple nodes then check whether temp1 is the first node in the list (temp1 == head).
- Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to its next node until temp2 reaches to the last node. Then set head $=$ head \rightarrow next, $\boldsymbol{t e m p} 2 \rightarrow$ next $=$ head and delete temp1.
- Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 \rightarrow next $==$ head).
- Step 1 1- If temp1 is last node then set temp2 \rightarrow next $=$ head and delete temp1 (free(temp1)).
- Step 12 - If temp1 is not first node and not last node then set temp2 $\rightarrow \boldsymbol{n e x t}=\boldsymbol{t e m p} \mathbf{1} \rightarrow \mathbf{n e x t}$ and delete temp1 (free(temp1)).

LINKED LIST IMPLEMENTATION OF STACK

The major problem with the stack implemented using an array is, it works only for a fixed number of data values. That means the amount of data must be specified at the beginning of the implementation itself. Stack implemented using an array is not suitable, when we don't know the size of data which we are going to use. A stack data structure can be implemented by using a linked list data structure. The stack implemented using linked list can work for an unlimited number of values. That means, stack implemented using linked list works for the variable size of data. So, there is no need to fix the size at the beginning of the implementation. The Stack implemented using linked list can organize as many data values as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element. That means every newly inserted element is pointed by 'top'. Whenever we want to remove an element from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its previous node in the list. The next field of the first element must be always NULL.

Stack Operations using Linked List

\rightarrow To implement a stack using a linked list, we need to set the following things before implementing actual operations.

- Step 1 - Include all the header files which are used in the program. And declare all the user defined functions.
- Step 2 - Define a 'Node' structure with two members data and next.
- Step 3 - Define a Node pointer 'top' and set it to NULL.
- Step 4 - Implement the main method by displaying Menu with list of operations and make suitable function calls in the
 main method.

push(value) - Inserting an element into the Stack

\rightarrow We can use the following steps to insert a new node into the stack...

- Step 1 - Create a newNode with given value.
- Step 2 - Check whether stack is Empty (top == NULL)
- Step 3 - If it is Empty, then set newNode \rightarrow next $=$ NULL.
- Step 4 - If it is Not Empty, then set newNode \rightarrow next = top.
- Step 5 - Finally, set top = newNode.

pop() - Deleting an Element from a Stack

\rightarrow We can use the following steps to delete a node from the stack...

- Step 1 - Check whether stack is Empty (top == NULL).
- Step 2 - If it is Empty, then display 'Stack is Empty!!! Deletion is not possible!!!" and terminate the function
- Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.
- Step 4 - Then set 'top $=\mathbf{t o p} \rightarrow$ next'.
- Step 5 - Finally, delete 'temp'. (free(temp)).

COLLEGE OF ENGINEERING \& TECHNOLOGY

display() - Displaying stack of elements

\rightarrow We can use the following steps to display the elements (nodes) of a stack...

- Step 1 - Check whether stack is Empty (top == NULL).
- Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.
- Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.
- Step 4 - Display 'temp \rightarrow data --->' and move it to the next node. Repeat the same until temp reaches to the first node in the stack. (temp \rightarrow next != NULL).
- Step 5 - Finally! Display 'temp \rightarrow data ---> NULL'.

COLLEGE OF ENGNEERMI \& TECHOOLOGY

LINKED LIST IMPLEMENTATION OF QUEUE

The major problem with the queue implemented using an array is, It will work for an only fixed number of data values. That means, the amount of data must be specified at the beginning itself. Queue using an array is not suitable when we don't know the size of data which we are going to use. A queue data structure can be implemented using a linked list data structure. The queue which is implemented using a linked list can work for an unlimited number of values. That means, queue using linked list can work for the variable size of data (No need to fix the size at the beginning of the implementation). The Queue implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and the first node is always pointed by 'front'

Operations

\rightarrow To implement queue using linked list, we need to set the following things before implementing actual operations.

- Step 1 - Include all the header files which are used in the program. And declare all the user defined functions.
- Step 2 - Define a 'Node' structure with two members data and next.
- Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.
- Step 4 - Implement the main method by displaying Menu of list of operations and make suitable function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

\rightarrow We can use the following steps to insert a new node into the queue...

- Step 1 - Create a newNode with given value and set 'newNode \rightarrow next' to NULL.
- Step 2 - Check whether queue is Empty (rear == NULL)
- Step 3 - If it is Empty then, set front = newNode and rear = newNode.
- Step 4 - If it is Not Empty then, set rear \rightarrow next $=$ newNode and rear $=$ newNode.

deQueue() - Deleting an Element from Queue

\rightarrow We can use the following steps to delete a node from the queue...

- Step 1 - Check whether queue is Empty (front == NULL).
- Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate from the function
- Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.
- Step 4 - Then set 'front $=\mathbf{f r o n t} \rightarrow \mathbf{n e x t}$ and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

\rightarrow We can use the following steps to display the elements (nodes) of a queue...

- Step 1 - Check whether queue is Empty (front == NULL).
- Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.
- Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with front.
- Step 4 - Display 'temp \rightarrow data --->' and move it to the next node. Repeat the same until 'temp' reaches to 'rear' (temp \rightarrow next $!=$ NULL).
- Step 5 - Finally! Display 'temp \rightarrow data ---> NULL'.

APPLICATION OF LINKED LIST

\rightarrow Implementation of stacks and queues.
\rightarrow Implementation of graphs : Adjacency list representation of graphs is most popular which is uses linked list to store adjacent vertices.
\rightarrow Dynamic memory allocation: We use linked list of free blocks.
\rightarrow Maintaining directory of names.
\rightarrow Performing arithmetic operations on long integers.

