
CHAPTER 2

LINEAR DATA STRUCTURE

SUBJECT:DATA

STRUCTURE

CODE:3130702

PREPARED BY:

ASST.PROF.PARAS NARKHEDE

(CSE DEPARTMENT,ACET)

ARRAY

TOPICS TO BE COVERED

➔ Array:

➔ Representation of arrays

◆ One dimensional array

◆ Two dimensional array

➔ Applications of arrays

◆ Symbol Manipulation (matrix representation of polynomial equation)

◆ Sparse matrix

➔ Sparse matrix and its representation

REPRESENTATION OF ARRAY

➔ •An array is a group of consective memory locations with same name and

data type.

➔ •Simple variable is a single memory location with unique name and a type.

But an Array is collection of different adjacent memory locations. All these

memory locations have one collective name and type.

➔ •The memory locations in the array are known as elements of array. The

total number of elements in the array is called length.

➔ •The elements of array is accessed with reference to its position in array, that

is call index or subscript.

ONE DIMENSIONAL ARRAY

➔ A type of array in which all elements are arranged in the form of a list is

known as 1-D array or single dimensional array or linear list.

➔ Declaring 1-D Array:

● data_type identifier[length];

● e.g: int marks[5];

Initialization of 1-D array

Elements of an array can be initialized after an array is declared. An array can be

declared at Compile time or at Run time

Compile time initialization

int age[5] = {20,21,19,23,25}

Here first element of age is initialized to 20, second to 21 and so on.

Run time initialization

for(int i =0; i<5;i++){

age[i]= 20;

}

TWO DIMENSIONAL ARRAY

➔ Two-D array can be considered as table that consists of rows and columns.

Each element in 2-D array is refered with the help of two indexes. One

index indicates row and second indicates the column.

➔ Declaring 2-D Array:

Data_type

Identifier[row][colu

mn]; e.g: int

arr[4][3];

➔ The two-D array can also be initialized at the time of declaration.

Initialization is performed by assigning the initial values in braces

seperated by commas.

● Some important points :

➔ oThe elements of each row are enclosed within braces and seperated by

comma.

➔ oAll rows are enclosed within braces.

➔ oFor number arrays, if all elements are not specified , the un specified

elements are initialized by zero.

APPLICATION OF ARRAY

➔ Symbol Manipulation (matrix representation of polynomial equation)

◆ Sparse Matrix

➔ Matrix representation of polynomial equation

◆ We can use array for different kind of operations in polynomial equation

such as addition, subtraction, division, differentiation etc…

◆ We are interested in finding suitable representation for polynomial so

that different operations like addition, subtraction etc… can be

performed in efficient manner

◆ Array can be used to represent Polynomial equation

SPARSE MATRIX

➔ An mXn matrix is said to be sparse if “many” of its elements

are zero.

➔ A matrix that is not sparse is called a dense matrix.

➔ We can device a simple representation scheme whose space

requirement equals the size of the non-zero elements.

SPARSE MATRIX

➔ To construct matrix structure from liner representation we

need to record

➔ Original row and columns of each non zero entries

➔ No of rows and columns in the matrix

➔ So each element of the array into which the sparse matrix is

mapped need to have three fields: row, column and value

SPARSE MATRIX

➔ A super market conducting a study of the mix items purchased by its

customers.

➔ For this study data are gathered for the purchase made by 1000 customers.

➔ These data are organized into a matrix, purchases with purchases(i,j) being

the quantity of item i purchased by customer j.

➔ Suppose that the super market has an inventory of 10,000 different items.

➔ The purchase matrix is therefore a 10,000 x 1,000 matrix

➔ If the average customer buys 20 different items only about 20,000 of

1,00,000,000 matrix entries are nonzero

STACK

STACK DEFINITION & CONCEPT

A stack is a data structure in which items

can be inserted only from one end and

get items back from the same end. There

, the last item inserted into stack, is the

the first item to be taken out from the

stack. In short its also called Last in First

out [LIFO].

EXAMPLE OF STACK

➔ A Stack of book on table.

➔ Token stack in Bank.

➔ Stack of trays and plates.

STACK OPERATION

➔ Top: Open end of the stack is called Top, From this end item can be inserted.

➔ Push: To insert an item from Top of stack is called push operation. The push operation change

the position of Top in stack.

➔ POP: To put-off, get or remove some item from top of the stack is the pop operation, We can

POP only only from top of the stack.

➔ IsEmpty: Stack considered empty when there is no item on Top. IsEmpty operation return true

when no item in stack else false.

➔ IsFull: Stack considered full if no other element can be inserted on top of the stack. This

condition normally occur when stack implement ed through array.

PUSH

➔ This procedure inserts

an element X to the

top of a stack

➔ Stack is represented

by a vector S

containing N elements

➔ A pointer TOP

represents the top

element in the stack.

POP

➔ This function removes &

returns the top element

from a stack.

➔ Stack is represented by

a vector S containing N

elements.

➔ A pointer TOP

represents the top

element in the stack.

PEEP

➔ This function returns

the value of the Ith

element from the TOP

of the stack. The

element is not deleted

by this function.

➔ Stack is represented

by a vector S

containing N

elements.

APPLICATION OF STACK

➔ Expression Evaluation

◆ Stack is used to evaluate prefix, postfix and infix expressions.

➔ Expression Conversion

◆ An expression can be represented in prefix, postfix or infix notation. Stack can be used to

convert one form of expression to another.

➔ Syntax Parsing

◆ Many compilers use a stack for parsing the syntax of expressions, program blocks etc.

before translating into low level code.

➔ Backtracking

◆ Suppose we are finding a path for solving maze problem. We choose a path and after

following it we realize that it is wrong. Now we need to go back to the beginning of the

path to start with new path. This can be done with the help of stack.

➔ Parenthesis Checking

◆ Stack is used to check the proper opening and closing of parenthesis.

➔ String Reversal

◆ Stack is used to reverse a string. We push the characters of string one by one into stack

and then pop character from stack.

➔ Function Call

◆ Stack is used to keep information about the active functions or subroutines.

POLISH EXPRESSION

Infix, Postfix and Prefix notations are

three different but equivalent ways of

writing expressions. It is easiest to

demonstrate the differences by looking

at examples of operators that take two

operands.

INFIX NOTATION

➔ Infix notation: X + Y

➔ Operators are written in-between their operands. This is the usual way we write expressions. An

expression such as A * (B + C) / D is usually taken to mean something like: "First add B and C

together, then multiply the result by A, then divide by D to give the final answer."

➔ Infix notation needs extra information to make the order of evaluation of the operators clear:

rules built into the language about operator precedence and associativity, and brackets () to

allow users to override these rules. For example, the usual rules for associativity say that we

perform operations from left to right, so the multiplication by A is assumed to come before the

division by D. Similarly, the usual rules for precedence say that we perform multiplication and

division before we perform addition and subtraction.

PREFIX NOTATION

➔ Prefix notation (also known as "Polish notation"): + X Y

➔ Operators are written before their operands. The expressions given above are

equivalent to / * A + B C D

➔ As for Postfix, operators are evaluated left-to-right and brackets are superfluous.

Operators act on the two nearest values on the right. I have again added (totally

unnecessary) brackets to make this clear:

➔ (/ (* A (+ B C)) D)

➔ Although Prefix "operators are evaluated left-to-right", they use values to their right,

and if these values themselves involve computations then this changes the order that

the operators have to be evaluated in. In the example above, although the division is

the first operator on the left, it acts on the result of the multiplication, and so the

multiplication has to happen before the division (and similarly the addition has to

happen before the multiplication).

➔ Because Postfix operators use values to their left, any values involving computations

will already have been calculated as we go left-to-right, and so the order of evaluation

of the operators is not disrupted in the same way as in Prefix expressions.

POSTFIX NOTATION

➔ Postfix notation (also known as "Reverse Polish notation"): X Y +

➔ Operators are written after their operands. The infix expression given above is equivalent to A B

C + * D /

➔ The order of evaluation of operators is always left-to-right, and brackets cannot be used to

change this order. Because the "+" is to the left of the "*" in the example above, the addition

must be performed before the multiplication.

➔ Operators act on values immediately to the left of them. For example, the "+" above uses the

"B" and "C". We can add (totally unnecessary) brackets to make this explicit:

➔ ((A (B C +) *) D /)

➔ Thus, the "*" uses the two values immediately preceding: "A", and the result of the addition.

Similarly, the "/" uses the result of the multiplication and the "D".

EXAMPLE

In all three versions, the

operands occur in the same

order, and just the operators

have to be moved to keep

the meaning correct. (This is

particularly important for

asymmetric operators like

subtraction and division: A -

B does not mean the same as

B - A; the former is

equivalent to A B - or - A B,

the latter to B A - or - B A).

CONVERTING BETWEEN THIS NOTATION

INFIX TO POSTFIX

➔ Infix expression can be directly

evaluated but the standard practice in

CS is that the infix expression

converted to postfix form and then the

expression is evaluated. During both

processes stack is proved to be a useful

data structure.

➔ Example A*B+C become AB*C+

ALGORITHM

1. Given a expression in the infix form.

2. Find the highest precedence operator

3.If there are more then one operators with the same precedence check associativity, i.e.

pick the left most first.

4.Convert the operator and its operands from infix to postfix A + B --> A B+

5.Repeat steps 2 to 4, until all the operators in the given expression are in the postfix form

INFIX TO PREFIX

1. Given a expression in the infix form.

2. Find the highest precedence operator

3.If there are more then one operators with the same precedence check associativity, i.e.

pick the left most first.

4.Convert the operator and its operands from infix to prefix A + B --> +A B

5.Repeat steps 2 to 4, until all the operators in the given expression are in the postfix form.

RECURSION

➔ Recursion is one of the most powerful tools in a programming language, but

one of the most threatening topics-as most of the beginners and not

surprising to even experienced students feel.

➔ When function is called within the same function, it is known as recursion in

C. The function which calls the same function, is known as recursive

function.

➔ Recursion is defined as defining anything in terms of itself. Recursion is used

to solve problems involving iterations, in reverse order.

➔ Types of Recursion

◆ There are two types of

Recursion

● Direct recursion

● Indirect recursion

➔ Direct Recursion

➔ When in the body of a method there

is a call to the same method, we say

that the method is directly

recursive.

➔ There are three types of Direct

Recursion

◆ Linear Recursion

◆ Binary Recursion

◆ Multiple Recursion

ALGORITHM TO FIND FACTORIAL USING

RECURSION

➔ Given integer number N

➔ This algorithm computes factorial of N.

➔ Stack S is used to store an activation record associated with each recursive call.

➔ TOP is a pointer to the top element of stack S.

➔ Each activation record contains the current value of N and the current return

address RET_ADDE.

➔ TEMP_REC is also a record which contains two variables PARAM & ADDRESS.

➔ Initially return address is set to the main calling address. PARAM is set to initial

value N.

ALGORITHM:FACTORIAL

TOWER OF HANOI

➔ These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one

sits over the larger one. There are other variations of the puzzle where the number of disks

increase, but the tower count remains the same.

➔ Rules

◆ The mission is to move all the disks to some another tower without violating the sequence

of arrangement. A few rules to be followed for Tower of Hanoi are −

◆ Only one disk can be moved among the towers at any given time.

◆ Only the "top" disk can be removed.

◆ No large disk can sit over a small disk.

ALGORITHM FOR TOWER OF HANOI
START

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1, THEN

move disk from source to dest

ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1

move disk from source to dest // Step 2

Hanoi(disk - 1, aux, dest, source) // Step 3

END IF

END Procedure

STOP

QUEUE

REPRESENTATION OF QUEUE

Queue is an abstract data structure, somewhat similar to stack. In contrast to stack, queue

is opened at both end. One end is always used to insert data enqueue and the other is used

to remove data dequeue. Queue follows First-In-First-Out methodology, i.e., the data item

stored first will be accessed first.

OPERATION ON QUEUE

➔ Queue operations may involve initializing or defining the queue, utilizing it

and then completing erasing it from memory. Here we shall try to understand

basic operations associated with queues −

◆ enqueue − add store an item to the queue.

◆ dequeue − remove access an item from the queue.

➔ Few more functions are required to make above mentioned queue operation

efficient. These are −

◆ peek − get the element at front of the queue without removing it.

◆ isfull − checks if queue is full.

◆ isempty − checks if queue is empty.

➔ In queue, we always dequeue oraccess data, pointed by front pointer and

while enqueing orstoring data in queue we take help of rear pointer.

ENQUEUE OPERATION

➔ As queue maintains two data pointers, front and rear, its operations are

comparatively more difficult to implement than stack. The following steps

should be taken to enqueue insert data into a queue −

◆ Step 1 − Check if queue is full.

◆ Step 2 − If queue is full, produce overflow error and exit.

◆ Step 3 − If queue is not full, increment rear pointer to point next empty

space.

◆ Step 4 − Add data element to the queue location, where rear is pointing.

◆ Step 5 − return success.

ALGORITHM FOR ENQUEUE OPERATION

DEQUEUE OPERATION

➔ Accessing data from queue is a process of two tasks − access the data where

front is pointing and remove the data after access. The following steps are

taken to perform dequeue operation −

◆ Step 1 − Check if queue is empty.

◆ Step 2 − If queue is empty, produce underflow error and exit.

◆ Step 3 − If queue is not empty, access data where front is pointing.

◆ Step 4 − Increment front pointer to point next available data element.

◆ Step 5 − return success.

ALGORITHM FOR DEQUEUE OPERATION

CIRCULAR QUEUE

➔ Circular Queue is a linear data structure in which the

operations are performed based on FIFO (First In First

Out) principle and the last position is connected back to

the first position to make a circle. It is also called ‘Ring

Buffer’.

➔ In a normal Queue, we can insert elements until queue

becomes full. But once queue becomes full, we can not

insert the next element even if there is a space in front of

queue.

OPERATION ON CIRCULAR QUEUE

➔ Front: Get the front item from queue.

➔ Rear: Get the last item from queue.

➔ enQueue(value) This function is used to insert an element into the circular queue. In a circular queue, the new element is

always inserted at Rear position.

◆ Steps:Check whether queue is Full – Check ((rear == SIZE-1 && front == 0) || (rear == front-1)).

◆ If it is full then display Queue is full. If queue is not full then, check if (rear == SIZE – 1 && front != 0) if it

is true then set rear=0 and insert element.

➔ deQueue() This function is used to delete an element from the circular queue. In a circular queue, the element is always

deleted from front position.

◆ Steps:Check whether queue is Empty means check (front==-1).

◆ If it is empty then display Queue is empty. If queue is not empty then step 3

◆ Check if (front==rear) if it is true then set front=rear= -1 else check if (front==size-1), if it is true then set

front=0 and return the element.

EXAMPLE OF CIRCULAR QUEUE

enQueue(value) - Inserting value into the Circular Queue

➔ In a circular queue, enQueue() is a function which is used to insert an element into the circular queue. In a

circular queue, the new element is always inserted at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the circular queue. We can use the following steps to

insert an element into the circular queue…

◆ Step 1 - Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front == rear+1))

◆ Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and terminate

the function.

◆ Step 3 - If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE, then set

rear = -1.

◆ Step 4 - Increment rear value by one (rear++), set queue[rear] = value and check 'front == -1' if it

is TRUE, then set front = 0.

deQueue() - Deleting a value from the Circular Queue

➔ In a circular queue, deQueue() is a function used to delete an element from

the circular queue. In a circular queue, the element is always deleted from

front position. The deQueue() function doesn't take any value as a

parameter. We can use the following steps to delete an element from the

circular queue…

◆ Step 1 - Check whether queue is EMPTY. (front == -1 && rear == -

1)

◆ Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion

is not possible!!!" and terminate the function.

◆ Step 3 - If it is NOT EMPTY, then display queue[front] as deleted

element and increment the front value by one (front ++). Then check

whether front == SIZE, if it is TRUE, then set front = 0. Then check

whether both front - 1 and rear are equal (front -1 == rear), if it

TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Circular Queue

➔ We can use the following steps to display the elements of a circular queue…

◆ Step 1 - Check whether queue is EMPTY. (front == -1)

◆ Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

◆ Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

◆ Step 4 - Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and increment 'i'

value by one (i++). Repeat the same until 'i <= rear' becomes FALSE.

◆ Step 5 - If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value by one

(i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

◆ Step 6 - Set i to 0.

◆ Step 7 - Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the same until 'i

<= rear' becomes FALSE.

PRIORITY QUEUE

➔ A queue in which we are able to insert & remove items from any position

based on some property (such as priority of the task to be processed) is often

referred as priority queue.

➔ Below fig. represent a priority queue of jobs waiting to use a computer.

➔ Priorities are attached with each Job
◆ Priority 1 indicates Real Time Job

◆ Priority 2 indicates Online Job

◆ Priority 3 indicates Batch Processing Job

➔ Therefore if a job is initiated with priority i, it is inserted immediately at the end

of list of other jobs with priorities i.

➔ Here jobs are always removed from the front of queue

ARRAY REPRESENTATION OF PRIORITY

QUEUE

DOUBLY ENDED QUEUE

Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are performed at both the ends

(front and rear). That means, we can insert at both front and rear positions and can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

1. Input Restricted Double Ended Queue

2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double-ended queue, the insertion operation is performed at only one end and

deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end

and insertion operation is performed at both the ends.

APPLICATION OF QUEUE

➔ Queue of people at any service point such as ticketing etc.

➔ Queue of air planes waiting for landing instructions.

➔ Queue of processes in OS.

➔ Queue is also used by Operating systems for Job Scheduling.

➔ When a resource is shared among multiple consumers. E.g., in case of printers the first one to

be entered is the first to be processed.

➔ When data is transferred asynchronously (data not necessarily received at same rate as sent)

between two processes. Examples include IO Buffers, pipes, file IO, etc.

➔ Queue is used in BFS (Breadth First Search) algorithm. It helps in traversing a tree or graph.

➔ Queue is used in networking to handle congestion.

LINKED LIST

LINKED LIST

When we want to work with an unknown number of data values, we use a

linked list data structure to organize that data. The linked list is a linear data

structure that contains a sequence of elements such that each element links to

its next element in the sequence. Each element in a linked list is called "Node".

SINGLY LINKED LIST

Simply a list is a sequence of data, and the linked list is a sequence of data linked with each other.

The formal definition of a single linked list is as follows...

Single linked list is a sequence of elements in which every element has link to its next element

in the sequence.

In any single linked list, the individual element is called as "Node". Every "Node" contains two

fields, data field, and the next field. The data field is used to store actual value of the node and

next field is used to store the address of next node in the sequence.

The graphical representation of a node in a single linked list is as follows...

Operations on Single Linked List

➔ The following operations are performed on a Single Linked List

◆ Insertion

◆ Deletion

◆ Display

➔ Before we implement actual operations, first we need to set up an empty list. First, perform the following

steps before implementing actual operations.

◆ Step 1 - Include all the header files which are used in the program.

◆ Step 2 - Declare all the user defined functions.

◆ Step 3 - Define a Node structure with two members data and next

◆ Step 4 - Define a Node pointer 'head' and set it to NULL.

◆ Step 5 - Implement the main method by displaying operations menu and make suitable function calls

in the main method to perform user selected operation.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are

as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

➔ We can use the following steps to insert a new node at beginning of the single

linked list…

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, set newNode→next = NULL and head =

newNode.

◆ Step 4 - If it is Not Empty then, set newNode→next = head and head =

newNode.

Inserting At End of the list

➔ We can use the following steps to insert a new node at end of the single linked list…

◆ Step 1 - Create a newNode with given value and newNode → next as NULL.

◆ Step 2 - Check whether list is Empty (head == NULL).

◆ Step 3 - If it is Empty then, set head = newNode.

◆ Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

◆ Step 5 - Keep moving the temp to its next node until it reaches to the last node in the

list (until temp → next is equal to NULL).

◆ Step 6 - Set temp → next = newNode.

Inserting At Specific location in the list (After a

Node)

➔ We can use the following steps to insert a new node after a node in the single linked list…

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode.

◆ Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

◆ Step 5 - Keep moving the temp to its next node until it reaches to the node after which we want to insert the

newNode (until temp1 → data is equal to location, here location is the node value after which we want to

insert the newNode).

◆ Step 6 - Every time check whether temp is reached to last node or not. If it is reached to last node then

display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function.

Otherwise move the temp to next node.

◆ Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They

are as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

➔ We can use the following steps to delete a node from beginning of the single linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

◆ Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

◆ Step 4 - Check whether list is having only one node (temp → next == NULL)

◆ Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list

conditions)

◆ Step 6 - If it is FALSE then set head = temp → next, and delete temp.

Deleting from End of the list

➔ We can use the following steps to delete a node from end of the single linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the

function.

◆ Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.

◆ Step 4 - Check whether list has only one Node (temp1 → next == NULL)

◆ Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the function.

(Setting Empty list condition)

◆ Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. Repeat the

same until it reaches to the last node in the list. (until temp1 → next == NULL)

◆ Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

Deleting a Specific Node from the list

➔ We can use the following steps to delete a specific node from the single linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.

◆ Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize 'temp1' with head.

◆ Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last node. And every time set 'temp2

= temp1' before moving the 'temp1' to its next node.

◆ Step 5 - If it is reached to the last node then display 'Given node not found in the list! Deletion not possible!!!'. And

terminate the function.

◆ Step 6 - If it is reached to the exact node which we want to delete, then check whether list is having only one node or not

◆ Step 7 - If list has only one node and that is the node to be deleted, then set head = NULL and delete temp1 (free(temp1)).

◆ Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the list (temp1 == head).

◆ Step 9 - If temp1 is the first node then move the head to the next node (head = head → next) and delete temp1.

◆ Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 → next == NULL).

◆ Step 11 - If temp1 is last node then set temp2 → next = NULL and delete temp1 (free(temp1)).

◆ Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 → next and delete temp1

(free(temp1)).

DOUBLY LINKED LIST

In a single linked list, every node has a link to its next node in the sequence.

So, we can traverse from one node to another node only in one direction and

we can not traverse back. We can solve this kind of problem by using a

double linked list. A double linked list can be defined as follows...

Double linked list is a sequence of elements in which every element has

links to its previous element and next element in the sequence.

Operations on Double Linked List

In a double linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Insertion

In a double linked list, the insertion operation can be performed in three ways as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

➔ We can use the following steps to insert a new node at beginning of the double

linked list…

◆ Step 1 - Create a newNode with given value and newNode → previous as

NULL.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, assign NULL to newNode → next and newNode

to head.

◆ Step 4 - If it is not Empty then, assign head to newNode → next and

newNode to head.

Inserting At End of the list

➔ We can use the following steps to insert a new node at end of the double linked list…

◆ Step 1 - Create a newNode with given value and newNode → next as NULL.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty, then assign NULL to newNode → previous and newNode to head.

◆ Step 4 - If it is not Empty, then, define a node pointer temp and initialize with head.

◆ Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next is equal to NULL).

◆ Step 6 - Assign newNode to temp → next and temp to newNode → previous.

Inserting At Specific location in the list

(After a Node)

➔ We can use the following steps to insert a new node after a node in the double linked list…

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, assign NULL to both newNode → previous & newNode → next and set

newNode to head.

◆ Step 4 - If it is not Empty then, define two node pointers temp1 & temp2 and initialize temp1 with head.

◆ Step 5 - Keep moving the temp1 to its next node until it reaches to the node after which we want to insert

the newNode (until temp1 → data is equal to location, here location is the node value after which we want

to insert the newNode).

◆ Step 6 - Every time check whether temp1 is reached to the last node. If it is reached to the last node then

display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function.

Otherwise move the temp1 to next node.

◆ Step 7 - Assign temp1 → next to temp2, newNode to temp1 → next, temp1 to newNode → previous,

temp2 to newNode → next and newNode to temp2 → previous.

Deletion

In a double linked list, the deletion operation can be performed in three ways as

follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

➔ We can use the following steps to delete a node from beginning of the double linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.

◆ Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.

◆ Step 4 - Check whether list is having only one node (temp → previous is equal to temp →

next)

◆ Step 5 - If it is TRUE, then set head to NULL and delete temp (Setting Empty list

conditions)

◆ Step 6 - If it is FALSE, then assign temp → next to head, NULL to head → previous and

delete temp.

Deleting from End of the list

➔ We can use the following steps to delete a node from end of the double linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not possible' and terminate the

function.

◆ Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.

◆ Step 4 - Check whether list has only one Node (temp → previous and temp → next both are

NULL)

◆ Step 5 - If it is TRUE, then assign NULL to head and delete temp. And terminate from the

function. (Setting Empty list condition)

◆ Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node in the list. (until

temp → next is equal to NULL)

◆ Step 7 - Assign NULL to temp → previous → next and delete temp.

Deleting a Specific Node from the list

➔ We can use the following steps to delete a specific node from the double linked list…

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible'

and terminate the function.

◆ Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with

head.

◆ Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or to

the last node.

◆ Step 5 - If it is reached to the last node, then display 'Given node not found in the

list! Deletion not possible!!!' and terminate the fuction.

◆ Step 6 - If it is reached to the exact node which we want to delete, then check whether list is having only

one node or not

◆ Step 7 - If list has only one node and that is the node which is to be deleted then set head to NULL and

delete temp (free(temp)).

◆ Step 8 - If list contains multiple nodes, then check whether temp is the first node in the list (temp ==

head).

◆ Step 9 - If temp is the first node, then move the head to the next node (head = head → next), set head of

previous to NULL (head → previous = NULL) and delete temp.

➔ Step 10 - If temp is not the first node, then check whether it is the last node in the list (temp → next == NULL).

◆ Step 11 - If temp is the last node then set temp of previous of next to NULL (temp → previous → next =

NULL) and delete temp (free(temp)).

◆ Step 12 - If temp is not the first node and not the last node, then set temp of previous of next to temp of

next (temp → previous → next = temp → next), temp of next of previous to temp of previous (temp →

next → previous = temp → previous) and delete temp (free(temp)).

CIRCULAR LINKED LIST

In single linked list, every node points to its next node in the sequence and the last node points NULL. But in circular

linked list, every node points to its next node in the sequence but the last node points to the first node in the list.

A circular linked list is a sequence of elements in which every element has a link to its next element in the sequence

and the last element has a link to the first element.

That means circular linked list is similar to the single linked list except that the last node points to the first node in the list

Operations

In a circular linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Before we implement actual operations, first we need to setup empty list. First perform the following steps before

implementing actual operations.

● Step 1 - Include all the header files which are used in the program.

● Step 2 - Declare all the user defined functions.

● Step 3 - Define a Node structure with two members data and next

● Step 4 - Define a Node pointer 'head' and set it to NULL.

● Step 5 - Implement the main method by displaying operations menu and make suitable function calls in the main

method to perform user selected operation.

Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

➔ We can use the following steps to insert a new node at beginning of the circular linked list…

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, set head = newNode and newNode→next = head .

◆ Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.

◆ Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until

'temp → next == head').

◆ Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

Inserting At End of the list

➔ We can use the following steps to insert a new node at end of the circular linked list…

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL).

◆ Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

◆ Step 4 - If it is Not Empty then, define a node pointer temp and initialize with

head.

◆ Step 5 - Keep moving the temp to its next node until it reaches to the last node in

the list (until temp → next == head).

◆ Step 6 - Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list

(After a Node)
➔ We can use the following steps to insert a new node after a node in the circular linked list...

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether list is Empty (head == NULL)

◆ Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

◆ Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

◆ Step 5 - Keep moving the temp to its next node until it reaches to the node after which we want to insert the

newNode (until temp1 → data is equal to location, here location is the node value after which we want to insert the

newNode).

◆ Step 6 - Every time check whether temp is reached to the last node or not. If it is reached to last node then display

'Given node is not found in the list!!! Insertion not possible!!!' and terminate the function. Otherwise move the

temp to next node.

◆ Step 7 - If temp is reached to the exact node after which we want to insert the newNode then check whether it is last

node (temp → next == head).

◆ Step 8 - If temp is last node then set temp → next = newNode and newNode → next = head.

◆ Step 8 - If temp is not last node then set newNode → next = temp → next and temp → next = newNode.

Deletion

In a circular linked list, the deletion operation can be performed in three ways those are

as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

➔ We can use the following steps to delete a node from beginning of the circular linked list...

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the

function.

◆ Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize both

'temp1' and 'temp2' with head.

◆ Step 4 - Check whether list is having only one node (temp1 → next == head)

◆ Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list conditions)

◆ Step 6 - If it is FALSE move the temp1 until it reaches to the last node. (until temp1 → next ==

head)

◆ Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

Deleting from End of the list

➔ We can use the following steps to delete a node from end of the circular linked list...

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the

function.

◆ Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.

◆ Step 4 - Check whether list has only one Node (temp1 → next == head)

◆ Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from the function.

(Setting Empty list condition)

◆ Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. Repeat the

same until temp1 reaches to the last node in the list. (until temp1 → next == head)

◆ Step 7 - Set temp2 → next = head and delete temp1.

Deleting a Specific Node from the list

➔ We can use the following steps to delete a specific node from the circular linked list...

◆ Step 1 - Check whether list is Empty (head == NULL)

◆ Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.

◆ Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.

◆ Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last

node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next node.

◆ Step 5 - If it is reached to the last node then display 'Given node not found in the list!

Deletion not possible!!!'. And terminate the function.

◆ Step 6 - If it is reached to the exact node which we want to delete, then check whether list is

having only one node (temp1 → next == head)

◆ Step 7 - If list has only one node and that is the node to be deleted then set head = NULL and

delete temp1 (free(temp1)).

◆ Step 8 - If list contains multiple nodes then check whether temp1 is the first node in the list

(temp1 == head).

◆ Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to its next

node until temp2 reaches to the last node. Then set head = head → next, temp2 → next =

head and delete temp1.

◆ Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 →

next == head).

◆ Step 1 1- If temp1 is last node then set temp2 → next = head and delete temp1

(free(temp1)).

◆ Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 → next

and delete temp1 (free(temp1)).

LINKED LIST IMPLEMENTATION OF STACK

The major problem with the stack implemented using an array is, it works only for a fixed number of data values. That

means the amount of data must be specified at the beginning of the implementation itself. Stack implemented using an

array is not suitable, when we don't know the size of data which we are going to use. A stack data structure can be

implemented by using a linked list data structure. The stack implemented using linked list can work for an unlimited

number of values. That means, stack implemented using linked list works for the variable size of data. So, there is no

need to fix the size at the beginning of the implementation. The Stack implemented using linked list can organize as

many data values as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element. That means every newly inserted

element is pointed by 'top'. Whenever we want to remove an element from the stack, simply remove the node which is

pointed by 'top' by moving 'top' to its previous node in the list. The next field of the first element must be always NULL.

Stack Operations using Linked List

➔ To implement a stack using a linked list, we

need to set the following things before

implementing actual operations.

◆ Step 1 - Include all the header files

which are used in the program. And

declare all the user defined functions.

◆ Step 2 - Define a 'Node' structure with

two members data and next.

◆ Step 3 - Define a Node pointer 'top' and

set it to NULL.

◆ Step 4 - Implement the main method by

displaying Menu with list of operations

and make suitable function calls in the

main method.

push(value) - Inserting an element into

the Stack

➔ We can use the following steps to insert a new node into the stack...

◆ Step 1 - Create a newNode with given value.

◆ Step 2 - Check whether stack is Empty (top == NULL)

◆ Step 3 - If it is Empty, then set newNode → next = NULL.

◆ Step 4 - If it is Not Empty, then set newNode → next = top.

◆ Step 5 - Finally, set top = newNode.

pop() - Deleting an Element from a

Stack

➔ We can use the following steps to delete a node from the stack...

◆ Step 1 - Check whether stack is Empty (top == NULL).

◆ Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not

possible!!!" and terminate the function

◆ Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

◆ Step 4 - Then set 'top = top → next'.

◆ Step 5 - Finally, delete 'temp'. (free(temp)).

display() - Displaying stack of elements

➔ We can use the following steps to display the elements (nodes) of a stack...

◆ Step 1 - Check whether stack is Empty (top == NULL).

◆ Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

◆ Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.

◆ Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same until

temp reaches to the first node in the stack. (temp → next != NULL).

◆ Step 5 - Finally! Display 'temp → data ---> NULL'.

LINKED LIST IMPLEMENTATION OF QUEUE

The major problem with the queue implemented using an array is, It will work for an only fixed number of data values. That means, the

amount of data must be specified at the beginning itself. Queue using an array is not suitable when we don't know the size of data which we

are going to use. A queue data structure can be implemented using a linked list data structure. The queue which is implemented using a

linked list can work for an unlimited number of values. That means, queue using linked list can work for the variable size of data (No need to

fix the size at the beginning of the implementation). The Queue implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and the first node is always pointed by 'front'

Operations

➔ To implement queue using linked list, we need to set the following things before

implementing actual operations.

◆ Step 1 - Include all the header files which are used in the program. And declare all

the user defined functions.

◆ Step 2 - Define a 'Node' structure with two members data and next.

◆ Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.

◆ Step 4 - Implement the main method by displaying Menu of list of operations and

make suitable function calls in the main method to perform user selected

operation.

enQueue(value) - Inserting an element

into the Queue

➔ We can use the following steps to insert a new node into the queue...

◆ Step 1 - Create a newNode with given value and set 'newNode → next' to

NULL.

◆ Step 2 - Check whether queue is Empty (rear == NULL)

◆ Step 3 - If it is Empty then, set front = newNode and rear = newNode.

◆ Step 4 - If it is Not Empty then, set rear → next = newNode and rear =

newNode.

deQueue() - Deleting an Element from

Queue

➔ We can use the following steps to delete a node from the queue…

◆ Step 1 - Check whether queue is Empty (front == NULL).

◆ Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not

possible!!!" and terminate from the function

◆ Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to

'front'.

◆ Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of

Queue

➔ We can use the following steps to display the elements (nodes) of a queue…

◆ Step 1 - Check whether queue is Empty (front == NULL).

◆ Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the

function.

◆ Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize

with front.

◆ Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the

same until 'temp' reaches to 'rear' (temp → next != NULL).

◆ Step 5 - Finally! Display 'temp → data ---> NULL'.

APPLICATION OF LINKED LIST

➔ Implementation of stacks and queues.

➔ Implementation of graphs : Adjacency list representation of graphs is most

popular which is uses linked list to store adjacent vertices.

➔ Dynamic memory allocation : We use linked list of free blocks.

➔ Maintaining directory of names.

➔ Performing arithmetic operations on long integers.

