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TREE DEFINITION & CONCEPT
❖ A tree is a nonlinear hierarchical data structure that consists 

of nodes connected by edges.

❖ Other data structures such as arrays, linked list, stack, and 

queue are linear data structures that store data sequentially. 

In order to perform any operation in a linear data structure, 

the time complexity increases with the increase in the data 

size. But, it is not acceptable in today's computational world.

❖ Different tree data structures allow quicker and easier access 

to the data as it is a non-linear data structure.



TREE TERMINOLOGIES

Node

A node is an entity that contains a key or value and pointers to its child nodes.

The last nodes of each path are called leaf nodes or external nodes that do not 

contain a link/pointer to child nodes.

The node having at least a child node is called an internal node.

Edge

It is the link between any two nodes.



TREE TERMINOLOGIES

Root

It is the topmost node of a tree.

Height of a Node

The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path from the node to a leaf 

node).

Depth of a Node

The depth of a node is the number of edges from the root to the node.



TREE TERMINOLOGIES

Height of a Tree

The height of a Tree is the height of the root node or the depth of the 

deepest node.

Degree of a Node

The degree of a node is the total number of branches of that node.

Forest

A collection of disjoint trees is called a forest.



TREE APPLICATIONS

❖ Binary Search Trees(BSTs) are used to quickly check whether an element is present in a set 

or not.

❖ Heap is a kind of tree that is used for heap sort.

❖ A modified version of a tree called Tries is used in modern routers to store routing 

information.

❖ Most popular databases use B-Trees and T-Trees, which are variants of the tree structure we 

learned above to store their data

❖ Compilers use a syntax tree to validate the syntax of every program you write.



BASIC NOTATION OF GRAPH THEORY



BASIC NOTATION OF GRAPH THEORY

❖ Consider diagrams shown in above figure

❖ Every diagrams represent Graphs

❖ Every diagram consists of a set of points which are shown by dots

or circles and are sometimes labelled V1, V2, V3… OR 1,2,3…

❖ In every diagrams, certain pairs of such points are connected by

lines or arcs

❖ Note that every arc start at one point and ends at another point



BASIC NOTATION OF GRAPH THEORY
❖ Graph

➢ A graph G consist of a non-empty set V called the set of nodes (points, vertices) of the

graph, a set E which is the set of edges and a mapping from the set of edges E to a set of

pairs of elements of V

➢ It is also convenient to write a graph as G=(V,E)

➢ Notice that definition of graph implies that to every edge of a graph G, we can associate a

pair of nodes of the graph. If an edge X Є E is thus associated with a pair of nodes (u,v)

where u, v Є V then we says that edge x connect u and v

❖ Adjacent Nodes

➢ Any two nodes which are connected by an edge in a graph are called adjacent nodes



GRAPH DEFINITIONS

Directed & Undirected Edge

In a graph G=(V,E) an edge which is directed from one end to another end is called a

directed edge, while the edge which has no specific direction is called undirected edge

Directed graph (Digraph)

A graph in which every edge is directed is called directed graph or digraph e.g. b,e & g are

directed graphs

Undirected graph

A graph in which every edge is undirected is called undirected graph e.g. c & f are

undirected graphs

Mixed Graph

If some of the edges are directed and some are undirected in graph then the graph is

called mixed graph e.g. d is mixed graph



Distinct Edges
In case of directed edges, two possible edges between any pair of nodes which are opposite in

direction are considered Distinct.

Parallel Edges
In some directed as well as undirected graphs, we may have certain pairs of nodes joined by

more than one edges, such edges are called Parallel edges

Multigraph

Any graph which contains some parallel edges is called multigraph

If there is no more then one edge between a pair of nodes then such a graph is called Simple

graph

Weighted Graph

A graph in which weights are assigned to every edge is called weighted graph

Isolated Node

In a graph a node which is not adjacent to any other node is called isolated node

Null Graph

A graph containing only isolated nodes are called null graph. In other words set of edges in null

graph is empty





REPRESENTATION OF BINARY TREE

A binary tree is a tree data structure in which each 

parent node can have at most two children.

For example: In the image below, each element has 

at most two children.



TYPES OF BINARY TREE

Full Binary Tree

A full Binary tree is a special type of binary tree in 

which every parent node/internal node has either two 

or no children.

Perfect Binary Tree

A perfect binary tree is a type of binary tree in which 

every internal node has exactly two child nodes and all 

the leaf nodes are at the same level.



TYPES OF BINARY TREE

Complete Binary Tree

A complete binary tree is just like a full binary 

tree, but with two major differences

1. Every level must be completely filled

2. All the leaf elements must lean towards 

the left.

3. The last leaf element might not have a 

right sibling i.e. a complete binary tree 

doesn't have to be a full binary tree.



TYPES OF BINARY TREE

Degenerate or Pathological Tree

A degenerate or pathological tree is the tree having a 

single child either left or right.

Skewed Binary Tree

A skewed binary tree is a pathological/degenerate tree 

in which the tree is either dominated by the left nodes 

or the right nodes. Thus, there are two types of skewed 

binary tree: left-skewed binary tree and right-skewed 

binary tree.



TYPES OF BINARY TREE

Balanced Binary Tree

It is a type of binary tree in which the 

difference between the left and the 

right subtree for each node is either 0 

or 1.



BINARY TREE REPRESENTATION

A node of a binary tree is represented by a structure containing a 

data part and two pointers to other structures of the same type.

struct node

{

int data;

struct node *left;

struct node *right;

};



BINARY TREE TRAVERSAL

Traversing a tree means visiting every node in the tree. You might, for 

instance, want to add all the values in the tree or find the largest one. For all 

these operations, you will need to visit each node of the tree.

Linear data structures like arrays, stacks, queues, and linked list have only 

one way to read the data. But a hierarchical data structure like a tree can be 

traversed in different ways.

https://www.programiz.com/data-structures/stack
https://www.programiz.com/data-structures/queue
https://www.programiz.com/data-structures/linked-list
https://www.programiz.com/data-structures/trees


Instead, we use traversal methods that take into account the basic structure of a tree i.e.

struct node {

int data;

struct node* left;

struct node* right;

}

The struct node pointed to by left and right might have other left and right children so we should think of 

them as sub-trees instead of sub-nodes.

According to this structure, every tree is a combination of

● A node carrying data

● Two subtrees





INORDER TRAVERSAL

1. First, visit all the nodes in the left subtree

2. Then the root node

3. Visit all the nodes in the right subtree

inorder(root->left)

display(root->data)

inorder(root->right)



PREORDER TRAVERSAL

1. Visit root node

2. Visit all the nodes in the left subtree

3. Visit all the nodes in the right subtree

display(root->data)

preorder(root->left)

preorder(root->right)



POSTORDER TRAVERSAL

Postorder traversal

1. Visit all the nodes in the left subtree

2. Visit all the nodes in the right subtree

3. Visit the root node

postorder(root->left)

postorder(root->right)

display(root->data)





CONSTRUCT A BINARY TREE FROM 
TRAVERSAL



THREAD BINARY TREE
A binary tree can be represented using array representation or linked list representation. When a binary tree is

represented using linked list representation, the reference part of the node which doesn't have a child is filled

with a NULL pointer. In any binary tree linked list representation, there is a number of NULL pointers than

actual pointers. Generally, in any binary tree linked list representation, if there are 2N number of reference fields,

then N+1 number of reference fields are filled with NULL ( N+1 are NULL out of 2N ). This NULL pointer

does not play any role except indicating that there is no link (no child).

A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary Tree", which makes use of

NULL pointers to improve its traversal process. In a threaded binary tree, NULL pointers are replaced by

references of other nodes in the tree. These extra references are called as threads.

Threaded Binary Tree is also a binary tree in which all left child pointers that are NULL (in Linked list 

representation) points to its in-order predecessor, and all right child pointers that are NULL (in Linked 

list representation) points to its in-order successor.





To convert the above example binary tree into a threaded binary tree, first find the in-order

traversal of that tree...

In-order traversal of above binary tree...

H - D - I - B - E - A - F - J - C - G

When we represent the above binary tree using linked list representation, nodes H, I, E, F, J and G

left child pointers are NULL. This NULL is replaced by address of its in-order predecessor

respectively (I to D, E to B, F to A, J to F and G to C), but here the node H does not have its in-

order predecessor, so it points to the root node A. And nodes H, I, E, J and G right child pointers

are NULL. These NULL pointers are replaced by address of its in-order successor respectively (H

to D, I to B, E to A, and J to C), but here the node G does not have its in-order successor, so it

points to the root node A.



THREAD BINARY TREE
ADVANTAGES

❖ Inorder traversal is faster than

unthreaded version as stack is not required.

❖ Effectively determines the predecessor

and successor for inorder traversal, for

unthreaded tree this task is more difficult.

❖ A stack is required to provide upward

pointing information in binary tree which

threading provides without stack.

❖ It is possible to generate successor or

predecessor of any node without having

over head of stack with the help of

threading.

DISADVANTAGES

❖ Threaded trees are unable to

share common sub trees

❖ If Negative addressing is not

permitted in programming

language, two additional

fields are required

❖ Insertion into and deletion

from threaded binary tree are

more time consuming

because both thread and

structural link must be

maintained



BINARY SEARCH TREE

Binary search tree is a data structure that quickly allows us to maintain a sorted list of numbers.

● It is called a binary tree because each tree node has maximum of two children.

● It is called a search tree because it can be used to search for the presence of a number in O(log(n))

time.

● The properties that separates a binary search tree from a regular binary tree is

1. All nodes of left subtree are less than root node

2. All nodes of right subtree are more than root node

3. Both subtrees of each node are also BSTs i.e. they have the above two properties

https://www.programiz.com/data-structures/trees


BINARY SEARCH TREE

The binary tree on the right isn't a 

binary search tree because the 

right subtree of the node "3" 

contains a value smaller that it.



BINARY SEARCH TREE IS CONSTRUCTED 
FROM GIVEN DATA



DELETE A NODE FROM BINARY SEARCH TREE



CONVERSION OF GENERAL TREES TO 
BINARY TREES



AVL TREES

AVL tree is a self-balancing binary search tree in which 

each node maintains extra information called a balance 

factor whose value is either -1, 0 or +1.

AVL tree got its name after its inventor Georgy 

Adelson-Velsky and Landis.



Balance Factor

Balance factor of a node in an AVL tree is the difference between the height of the left subtree and 

that of the right subtree of that node.

Balance Factor = (Height of Left Subtree - Height of Right Subtree) or (Height of Right Subtree -

Height of Left Subtree)

The self balancing property of an avl tree is maintained by the balance factor. The value of balance 

factor should always be -1, 0 or +1.



LEFT ROTATION ON AVL TREE

In left-rotation, the arrangement of the nodes on the right is transformed into the arrangements on the left 

node.

Algorithm

1. Let the initial tree be:Left rotate

2. If y has a left subtree, assign x as the parent of the left subtree of y



LEFT ROTATION ON AVL TREE

❖ If y has a left subtree, assign x as the parent 

of the left subtree of y

❖ If the parent of x is NULL, make y as the 

root of the tree.

❖ Else if x is the left child of p, make y as the 

left child of p.

❖ Else assign y as the right child of p.

❖ Make y as the parent of x



RIGHT ROTATION ON AVL TREE

In left-rotation, the arrangement of the nodes on the left is transformed into the 

arrangements on the right node.

❖ Let the initial tree be

❖ If x has a right subtree, assign y as the parent of the right subtree of x

❖ If the parent of y is NULL, make x as the root of the tree.



RIGHT ROTATION ON AVL TREE

❖ Else if y is the right child of its parent p, make x as the right child of p.

❖ Else assign x as the left child of p.

❖ Make x as the parent of y



ALGORITHM TO INSERT A NODE

A newNode is always inserted as a leaf node with balance factor equal to 0.

1. Let the initial tree be



New node

Finding the location to insert newNode



2.Go to the appropriate leaf node to insert a newNode using the following recursive steps. Compare 

newKey with rootKey of the current tree.

1. If newKey < rootKey, call insertion algorithm on the left subtree of the current node until the 

leaf node is reached.

2. Else if newKey > rootKey, call insertion algorithm on the right subtree of current node until the 

leaf node is reached.

3. Else, return leafNode

3.Compare leafKey obtained from the above steps with newKey:

1. If newKey < leafKey, make newNode as the leftChild of leafNode.

2. Else, make newNode as rightChild of leafNode



ALGORITHM TO INSERT A NODE

4.Update balanceFactor of the nodes.

5.If the nodes are unbalanced, then rebalance the node.

1. If balanceFactor > 1, it means the height of the left subtree is greater than that of the right 

subtree. So, do a right rotation or left-right rotation

1. If newNodeKey < leftChildKey do right rotation.

2. Else, do left-right rotation



Balancing the tree with 

rotation



Balancing the tree with rotation

Final Balanced Tree



ALGORITHM TO DELETE A NODE

A node is always deleted as a leaf node. After deleting a node, the balance factors of the nodes get changed. In 

order to rebalance the balance factor, suitable rotations are performed.

1. Locate nodeToBeDeleted (recursion is used to find nodeToBeDeleted in the code used below).

2. There are three cases for deleting a node:

❖ If nodeToBeDeleted is the leaf node (ie. does not have any child), then remove nodeToBeDeleted.

❖ If nodeToBeDeleted has one child, then substitute the contents of nodeToBeDeleted with that of the child. 

Remove the child.

❖ If nodeToBeDeleted has two children, find the inorder successor w of nodeToBeDeleted (ie. node with a 

minimum value of key in the right subtree).





❖ Update balanceFactor of the nodes.

❖ Rebalance the tree if the balance factor of any of the nodes is not equal to -1, 0 or 

1.

❖ If balanceFactor of currentNode > 1,

➢ If balanceFactor of leftChild >= 0, do right rotation

➢ Else do left-right rotation.

❖ If balanceFactor of currentNode < -1,

➢ If balanceFactor of rightChild <= 0, do left rotation.

➢ Else do right-left rotation.







AVL FINAL TREE



HEIGHT BALANCED TREE



WEIGHT BALANCED TREE

A weight-balanced binary tree is a binary 

tree which is balanced based on knowledge 

of the probabilities of searching for each 

individual node. Within each subtree, the 

node with the highest weight appears at the 

root. This can result in more efficient 

searching performance. Construction of 

such a tree is similar to that of a Treap, but 

node weights are chosen randomly in the 

latter.



GRAPH MATRIX REPRESENTATION OF 

GRAPHS

A graph data structure is a collection of nodes that have data and are connected to other nodes.

Let's try to understand this through an example. On facebook, everything is a node. That includes 

User, Photo, Album, Event, Group, Page, Comment, Story, Video, Link, Note...anything that has 

data is a node.

Every relationship is an edge from one node to another. Whether you post a photo, join a group, 

like a page, etc., a new edge is created for that relationship.



Example of graph data structure



All of facebook is then a collection of 

these nodes and edges. This is because 

facebook uses a graph data structure to 

store its data.

More precisely, a graph is a data 

structure (V, E) that consists of

● A collection of vertices V

● A collection of edges E, 

represented as ordered pairs of 

vertices (u,v)

Vertices and edges



GRAPH TERMINOLOGY

❖ Adjacency: A vertex is said to be adjacent to another vertex if there is an edge connecting 

them. Vertices 2 and 3 are not adjacent because there is no edge between them.

❖ Path: A sequence of edges that allows you to go from vertex A to vertex B is called a path. 0-

1, 1-2 and 0-2 are paths from vertex 0 to vertex 2.

❖ Directed Graph: A graph in which an edge (u,v) doesn't necessarily mean that there is an 

edge (v, u) as well. The edges in such a graph are represented by arrows to show the direction 

of the edge.



GRAPH REPRESENTATION

1. Adjacency Matrix

❖ An adjacency matrix is a 2D array of V x V vertices. Each row and column represent a vertex.

❖ If the value of any element a[i][j] is 1, it represents that there is an edge connecting vertex i and vertex j.

❖ Since it is an undirected graph, for edge (0,2), we also need to mark edge (2,0); making the adjacency 

matrix symmetric about the diagonal.

❖ Edge lookup(checking if an edge exists between vertex A and vertex B) is extremely fast in adjacency 

matrix representation but we have to reserve space for every possible link between all vertices(V x V), so 

it requires more space.





2. Adjacency List

❖ An adjacency list represents a graph as an array of linked lists.

❖ The index of the array represents a vertex and each element in its linked list represents the 

other vertices that form an edge with the vertex.

❖ The adjacency list for the graph we made in the first example is as follows:

❖ An adjacency list is efficient in terms of storage because we only need to store the values for 

the edges. For a graph with millions of vertices, this can mean a lot of saved space.



Adjacency list representation



ELEMENTARY GRAPH OPERATION



BREADTH FIRST SEARCH
BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without loops. We use

Queue data structure with maximum size of total number of vertices in the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

● Step 1 - Define a Queue of size total number of vertices in the graph.

● Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue.

● Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and insert them into 

the Queue.

● Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue then delete that 

vertex.

● Step 5 - Repeat steps 3 and 4 until queue becomes empty.

● Step 6 - When queue becomes empty, then produce final spanning tree by removing unused edges from the graph













DEPTH FIRST SEARCH
DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without loops. We use

Stack data structure with maximum size of total number of vertices in the graph to implement DFS traversal.

We use the following steps to implement DFS traversal...

● Step 1 - Define a Stack of size total number of vertices in the graph.

● Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack.

● Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of stack and push it on to 

the stack.

● Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of the stack.

● Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from the stack.

● Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

● Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused edges from the graph





















SPANNING TREES

❖ A spanning tree is a sub-graph of an undirected and a connected graph, which includes all the 

vertices of the graph having a minimum possible number of edges. If a vertex is missed, then 

it is not a spanning tree.

❖ The edges may or may not have weights assigned to them.

❖ The total number of spanning trees with n vertices that can be created from a complete graph 

is equal to n(n-2).





SHORTEST PATH FIRST

❖ Dijkstra's algorithm allows us to find the shortest path between any two vertices of a graph.

❖ It differs from minimum spanning tree because the shortest distance between two vertices might not include all the 

vertices of the graph.

❖ Dijkstra's Algorithm works on the basis that any subpath B -> D of the shortest path A -> D between vertices A and 

D is also the shortest path between vertices B and D.

❖ Djikstra used this property in the opposite direction i.e we overestimate the distance of each vertex from the 

starting vertex. Then we visit each node and its neighbours to find the shortest subpath to those neighbours.

❖ The algorithm uses a greedy approach in the sense that we find the next best solution hoping that the end result is 

the best solution for the whole problem.







MINIMUM SPANNING TREE

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be 

many spanning trees. Minimum spanning tree is the spanning tree where the cost is minimum 

among all the spanning trees. There also can be many minimum spanning trees.

Minimum spanning tree has direct application in the design of networks. It is used in algorithms 

approximating the travelling salesman problem, multi-terminal minimum cut problem and 

minimum-cost weighted perfect matching. Other practical applications are:

1. Cluster Analysis

2. Handwriting recognition

3. Image segmentation





KRUSKAL’S ALGORITHM

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing spanning tree. 

Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has least weight 

and add it to the growing spanning tree.

Algorithm Steps:

● Sort the graph edges with respect to their weights.

● Start adding edges to the MST from the edge with the smallest weight until the edge of the largest 

weight.

● Only add edges which doesn't form a cycle , edges which connect only disconnected components.



So now the question is how to check if 

2

vertices are connected or not ?

This could be done using DFS which starts from the first vertex, then check if the second vertex is visited 

or not. But DFS will make time complexity large as it has an order of 

O(V+E)

where 

V

is the number of vertices, 

E

is the number of edges. So the best solution is "Disjoint Sets":

Disjoint sets are sets whose intersection is the empty set so it means that they don't have any element in 

common.





In Kruskal’s algorithm, at each iteration we will select the edge with the lowest weight. So, 

we will start with the lowest weighted edge first i.e., the edges with weight 1. After that we 

will select the second lowest weighted edge i.e., edge with weight 2. Notice these two edges 

are totally disjoint. Now, the next edge will be the third lowest weighted edge i.e., edge with 

weight 3, which connects the two disjoint pieces of the graph. Now, we are not allowed to 

pick the edge with weight 4, that will create a cycle and we can’t have any cycles. So we will 

select the fifth lowest weighted edge i.e., edge with weight 5. Now the other two edges will 

create cycles so we will ignore them. In the end, we end up with a minimum spanning tree 

with total cost 11 ( = 1 + 2 + 3 + 5).



PRIM’S ALGORITHM

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s Algorithm we grow 

the spanning tree from a starting position. Unlike an edge in Kruskal's, we add vertex to the growing spanning 

tree in Prim's.

Algorithm Steps:

● Maintain two disjoint sets of vertices. One containing vertices that are in the growing spanning tree and 

other that are not in the growing spanning tree.

● Select the cheapest vertex that is connected to the growing spanning tree and is not in the growing 

spanning tree and add it into the growing spanning tree. This can be done using Priority Queues. Insert the 

vertices, that are connected to growing spanning tree, into the Priority Queue.

● Check for cycles. To do that, mark the nodes which have been already selected and insert only those nodes 

in the Priority Queue that are not marked.





In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and 

mark it. In each iteration we will mark a new vertex that is adjacent to the one that we have 

already marked. As a greedy algorithm, Prim’s algorithm will select the cheapest edge and 

mark the vertex. So we will simply choose the edge with weight 1. In the next iteration we 

have three options, edges with weight 2, 3 and 4. So, we will select the edge with weight 2 

and mark the vertex. Now again we have three options, edges with weight 3, 4 and 5. But we 

can’t choose edge with weight 3 as it is creating a cycle. So we will select the edge with 

weight 4 and we end up with the minimum spanning tree of total cost 7 ( = 1 + 2 +4).




