
CHAPTER 4

HASHING AND FILE STRUCTURE

SUBJECT:DATA

STRUCTURE

CODE:3130702

PREPARED BY:

ASST.PROF.PARAS NARKHEDE

(CSE DEPARTMENT,ACET)

HASHING

WHAT IS HASHING?

❖ Sequential search requires, on the average O(n) comparisons to locate an element, so

many comparisons are not desirable for a large database of elements.

❖ Binary search requires much fewer comparisons on the average O (log n) but there is an

additional requirement that the data should be sorted. Even with best sorting algorithm,

sorting of elements require O(n log n) comparisons.

❖ There is another widely used technique for storing of data called hashing. It does away

with the requirement of keeping data sorted (as in binary search) and its best case timing

complexity is of constant order O(1). In its worst case, hashing algorithm starts behaving

like linear search.

❖ Best case timing behavior of searching using hashing = O(1)

❖ Worst case timing Behavior of searching using hashing = O(n)

THE HASH TABLE

HASHING FUNCTION

Hash function is a function which

is applied on a key by which it

produces an integer, which can be

used as an address of hash table.

Hence one can use the same hash

function for accessing the data

from the hash table. In this the

integer returned by the hash

function is called hash key.

TYPES OF HASHING FUNCTION

Different hashing functions

Division-Method

Mid square Methods

Folding Method

Digit Analysis

Length Dependent Method

Algebraic Coding

Multiplicative Hashing

DIVISION METHOD

In this the hash function is dependent upon the remainder of a division. For example:-if the record

52,68,99,84 is to be placed in a hash table and let us take the table size is 10.

Then:

h(key)=record% table size.

2=52%10

8=68%10

9=99%10

4=84%10

MID SQUARE METHOD

In this method firstly key is squared and then mid part of the result is

taken as the index. For example: consider that if we want to place a record

of 3101 and the size of table is 1000. So 3101*3101=9616201 i.e. h

(3101) = 162 (middle 3 digit)

DIGIT FOLDING METHOD

In this method the key is divided into separate parts and by using some simple

operations these parts are combined to produce a hash key. For example: consider

a record of 12465512 then it will be divided into parts i.e. 124, 655, 12. After

dividing the parts combine these parts by adding it.

H(key)=124+655+12

=791

DIGIT ANALYSIS

This hashing function is a distribution-dependent

Here we make a statistical analysis of digits of the key, and select those

digits (of fixed position) which occur quite frequently

Then reverse or shifts the digits to get the address

For example,

The key is : 9861234

If the statistical analysis has revealed the fact that the third and fifth position

digits occur quite frequently,

We choose the digits in these positions from the key

So we get, 62. Reversing it we get 26 as the address

LENGTH DEPENDENT METHOD

In this type of hashing function we use the length of the key

along with some portion of the key to produce the address,

directly.

In the indirect method, the length of the key along with some

portion of the key is used to obtain intermediate value.

ALGEBRAIC CODING

Here a n bit key value is represented as a polynomial.

The divisor polynomial is then constructed based on the address

range required.

The modular division of key-polynomial by divisor polynomial,

to get the address-polynomial.

Let f(x) = polynomial of n bit key = a1 + a2x + ……. + anxn-1

d(x) = divisor polynomial = d1 + d2x + …. + dnxn-1

Required address polynomial will be f(x) mod d(x)

MULTI CAPTIVE HASHING

This method is based on obtaining an address of a key, based on the

multiplication value.

If k is the non-negative key, and a constant c, (0 < c < 1)

Compute kc mod 1, which is a fractional part of kc.

Multiply this fractional part by m and take a floor value to get the

address

CHARACTERISTIC OF GOOD HASHING
FUNCTION

1. The hash function should generate different hash values for the similar string.

2. The hash function is easy to understand and simple to compute.

3. The hash function should produce the keys which will get distributed,

uniformly over an array.

4. A number of collisions should be less while placing the data in the hash

table.

5. The hash function is a perfect hash function when it uses all the input data

COLLISION

It is a situation in which the hash function returns the same hash key for

more than one record, it is called as collision. Sometimes when we are

going to resolve the collision it may lead to a overflow condition and this

overflow and collision condition makes the poor hash function.

COLLISION RESOLUTION TECHNIQUE

If there is a problem of

collision occurs then it

can be handled by apply

some technique. These

techniques are called as

collision resolution

techniques. There are

generally four techniques

which are described

below.

CHAINING

It is a method in which additional field with data

i.e. chain is introduced. A chain is maintained at

the home bucket. In this when a collision occurs

then a linked list is maintained for colliding data.

Example: Let us consider a hash table of size 10

and we apply a hash function of H(key)=key %

size of table. Let us take the keys to be inserted

are 31,33,77,61. In the above diagram we can see

at same bucket 1 there are two records which are

maintained by linked list or we can say by

chaining method.

LINEAR PROBING

It is very easy and simple method to resolve or to handle the

collision. In this collision can be solved by placing the second

record linearly down, whenever the empty place is found. In this

method there is a problem of clustering which means at some place

block of a data is formed in a hash table.

Example: Let us consider a hash table of size 10 and hash function

is defined as H(key)=key % table size. Consider that following

keys are to be inserted that are 56,64,36,71.

In this diagram we can see that 56 and 36 need to be placed at same

bucket but by linear probing technique the records linearly placed

downward if place is empty i.e. it can be seen 36 is placed at index

7.

QUADRATIC PROBING

This is a method in which solving of clustering

problem is done. In this method the hash function

is defined by the H(key)=(H(key)+x*x)%table

size. Let us consider we have to insert following

elements that are:-67, 90,55,17,49.

In this we can see if we insert 67, 90, and 55 it can

be inserted easily but at case of 17 hash function

is used in such a manner that :-(17+0*0)%10=17

(when x=0 it provide the index value 7 only) by

making the increment in value of x. let x =1 so

(17+1*1)%10=8.in this case bucket 8 is empty

hence we will place 17 at index 8.

DOUBLE HASHING

It is a technique in which two hash function are used when there is an occurrence of collision. In this

method 1 hash function is simple as same as division method. But for the second hash function there

are two important rules which are

1. It must never evaluate to zero.

2. Must sure about the buckets, that they are probed.

The hash functions for this technique are:

H1(key)=key % table size

H2(key)=P-(key mod P)

Where, p is a prime number which should be taken smaller than

the size of a hash table.

Example: Let us consider we have to insert 67, 90,55,17,49.

In this we can see 67, 90 and 55 can be inserted in a hash table

by using first hash function but in case of 17 again the bucket is

full and in this case we have to use the second hash function

which is H2(key)=P-(key mode P) here p is a prime number

which should be taken smaller than the hash table so value of p

will be the 7.

i.e. H2(17)=7-(17%7)=7-3=4 that means we have to take 4

jumps for placing the 17. Therefore 17 will be placed at index 1.

FILE STRUCTURE

CONCEPTS OF FIELD

A field is an area in a fixed or known location in a unit of data such as a record, message header, or

computer instruction that has a purpose and usually a fixed size. In some contexts, a field can be

subdivided into smaller fields. Here are some examples:

1)In a database table, a field is a data structure for a single piece of data. Fields are organized into

records, which contain all the information within the table relevant to a specific entity. For example, in a

table called customer contact information, telephone number would likely be a field in a row that would

also contain other fields such as street address and city. The records make up the table rows and the fields

make up the columns.

https://searchoracle.techtarget.com/definition/record
https://whatis.techtarget.com/definition/header
https://whatis.techtarget.com/definition/instruction
https://whatis.techtarget.com/definition/table
https://searchsqlserver.techtarget.com/definition/data-structure
https://searchoracle.techtarget.com/definition/record

2) In a form that you fill out on a Web site, each box that asks you for information is a text entry field.

3) In the header of a variable-length transmission unit, a two-byte subfield in the header (which is really a field itself)

could identify the length in bytes of the message

https://whatis.techtarget.com/definition/header

RECORDS AND FILES

File is a collection of records related to

each other. The file size is limited by the

size of memory and storage medium.

There are two important features of

file:

1. File Activity

2. File Volatility

File activity specifies percent of actual records which proceed in a single run.

File volatility addresses the properties of record changes. It helps to increase the efficiency of disk design than

tape.

File Organization

File organization ensures that records are available for processing. It is used to determine an efficient file

organization for each base relation.

For example, if we want to retrieve employee records in alphabetical order of name. Sorting the file by employee

name is a good file organization. However, if we want to retrieve all employees whose marks are in a certain

range, a file is ordered by employee name would not be a good file organization.

SEQUENTIAL FILE ORGANIZATION

❖ Storing and sorting in contiguous block within files on tape

or disk is called as sequential access file organization.

❖ In sequential access file organization, all records are stored

in a sequential order. The records are arranged in the

ascending or descending order of a key field.

❖ Sequential file search starts from the beginning of the file

and the records can be added at the end of the file.

❖ In sequential file, it is not possible to add a record in the

middle of the file without rewriting the file.

Advantages of sequential file

● It is simple to program and easy to design.

● Sequential file is best use if storage space.

Disadvantages of sequential file

● Sequential file is time consuming process.

● It has high data redundancy.

● Random searching is not possible.

INDEXED FILE ORGANIZATION

❖ Indexed sequential access file combines both sequential file and direct access file

organization.

❖ In indexed sequential access file, records are stored randomly on a direct access device such

as magnetic disk by a primary key.

❖ This file have multiple keys. These keys can be alphanumeric in which the records are

ordered is called primary key.

❖ The data can be access either sequentially or randomly using the index. The index is stored

in a file and read into memory when the file is opened.

Advantages of Indexed sequential access file organization

● In indexed sequential access file, sequential file and random file access is possible.

● It accesses the records very fast if the index table is properly organized.

● The records can be inserted in the middle of the file.

● It provides quick access for sequential and direct processing.

● It reduces the degree of the sequential search.

Disadvantages of Indexed sequential access file organization

● Indexed sequential access file requires unique keys and periodic reorganization.

● Indexed sequential access file takes longer time to search the index for the data access or retrieval.

● It requires more storage space.

● It is expensive because it requires special software.

● It is less efficient in the use of storage space as compared to other file organizations.

RELATIVE/RANDOM FILE ORGANIZATION

A relative file is a file in which each record is identified by its ordinal position in the file (record 1, record

2 and so on). This means that records can be accessed randomly as well as sequentially:

● For sequential access, simply execute a READ or WRITE statement to access the next record

in the file.

● For random access, define a data item as the relative key. Then specify in the data item the

ordinal number of the record that you need to READ or WRITE.

Because records can be accessed randomly, access to relative files is fast.

Although you can declare variable length records for a relative file, this can be wasteful of disk space

because the system assumes the maximum record length for all WRITE statements to the file and pads the

unused character positions. This is done so that the COBOL file handling routines can quickly calculate

the physical location of any record, given the record's record number in the file.

As relative files always contain fixed length records, no space is saved by specifying data compression. In

fact, if data compression is specified for a relative file, it is ignored by the File Handler.

Each record in a relative file is followed by a two-byte record marker which indicates the current status of

the record. The status of a record can be:

x"0D0A" - record present

x"0D00" - record deleted or never written

When you delete a record from a relative file, the record's contents are not removed immediately. The record's record marker is

updated to show that it has been deleted, but the contents of the deleted record remain physically in the file until a new record is

written. If you need to remove the data from the file for security reasons, follow the procedure below:

1. Use REWRITE to overwrite the record, for example with space characters.

2. Delete the record.

To define a relative file, specify ORGANIZATION IS RELATIVE in the SELECT clause for the file in your COBOL program.

To access records randomly, you must also:

● Specify ACCESS MODE IS RANDOM or ACCESS MODE IS DYNAMIC in the SELECT clause for the file

● Define a relative key in the Working-Storage Section of your program

INDEXING STRUCTURE FOR INDEX FILES

Indexing is used to speed up retrieval of records.

It is done with the help of a separate sequential file.

Each record of in the index file consists of two fields, a key field

and a pointer into the main file.

To find a specific record for the given key value, index is searched

for the given key value.

Binary search can used to search in index file. After getting the

address of record from index file, the record in main file can

easily be retrieved.

TYPES OF
INDEXING

There are primarily three

methods of indexing:

● Clustered Indexing

● Non-Clustered or

Secondary Indexing

● Multilevel Indexing

CLUSTERING INDEXING

When more than two records are stored in the same file these types of storing known as cluster indexing. By

using the cluster indexing we can reduce the cost of searching reason being multiple records related to the

same thing are stored at one place and it also gives the frequent joing of more than two tables(records).

Clustering index is defined on an ordered data file. The data file is ordered on a non-key field. In some cases,

the index is created on non-primary key columns which may not be unique for each record. In such cases, in

order to identify the records faster, we will group two or more columns together to get the unique values and

create index out of them. This method is known as the clustering index. Basically, records with similar

characteristics are grouped together and indexes are created for these groups.

For example, students studying in each semester are grouped together. i.e. 1st Semester students, 2nd

semester students, 3rd semester students etc are grouped.

PRIMARY INDEXING

This is a type of Clustered Indexing wherein the data is sorted according

to the search key and the primary key of the database table is used to

create the index. It is a default format of indexing where it induces

sequential file organization. As primary keys are unique and are stored in

a sorted manner, the performance of the searching operation is quite

efficient.

NON CLUSTER OR SECONDARY INDEXING

A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual

pointers or references to the location where the data is actually stored. Data is not

physically stored in the order of the index. Instead, data is present in leaf nodes. For eg. the

contents page of a book. Each entry gives us the page number or location of the

information stored. The actual data here(information on each page of the book) is not

organized but we have an ordered reference(contents page) to where the data points

actually lie. We can have only dense ordering in the non-clustered index as sparse ordering

is not possible because data is not physically organized accordingly.

It requires more time as compared to the clustered index because some amount of extra

work is done in order to extract the data by further following the pointer. In the case of a

clustered index, data is directly present in front of the index.

MULTI LEVEL INDEXING

With the growth of the size of the database, indices also grow. As the index is

stored in the main memory, a single-level index might become too large a

size to store with multiple disk accesses. The multilevel indexing segregates

the main block into various smaller blocks so that the same can stored in a

single block. The outer blocks are divided into inner blocks which in turn are

pointed to the data blocks. This can be easily stored in the main memory with

fewer overheads.

HASHING FOR DIRECT FILES

HASHING FOR DIRECT FILES

It is a common technique used for fast accessing of records on secondary

storage.

Records of a file are divided among buckets.

A bucket is either one disk block or cluster of contiguous blocks.

A hashing function maps a key into a bucket number. The buckets are

numbered 0, 1,2...b-1.

A hash function f maps each key value into one of the integers 0 through b - 1.

If x is a key, f(x) is the number of bucket that contains the record with key x.

The blocks making up each bucket could either be contiguous blocks or they can

be chained together in a linked list.

MULTI KEY FILE ORGANIZATION &
ACCESS METHODS
This technique is used to sort a file based on multiple key values. Multi key file organization allows access to a data file by several different key

fields. Example: Library file that requires access by author and by subject matter and title.

Scenario 1 can be like, sort the file based on roll number (this is key; you can also create clustered index). On an attribute may be other than roll

number e.g. Class (MCA-I, MCA-II, MCA-III, …., MCA-VI) invert the file.

Now if I wish to access the records of students from MCA-VI, I will locate the first record and will go sequentially in the linked list. This technique

works great if -

● Attribute on which I am inverting is primary key or having nearly unique values

● The need is to access everybody in a particular class

Longer the list, it is going to be a clumsy scan. The list can be flexible in size.

● Selection/Search – go in a particular order;

● Insertion – will be easy in append mode;

● Deletion – 1) Re-arrange pointer 2) Mark deleted & re-arrange pointer at later point of time.

Scenario 2, records are

sorted based on Roll

numbers; now requirement

is to get names of students

starting with ‘J’. Therefore

create inverted index on

names where names

starting with each alphabet

will be stored as linked

list. Now go through the

linked list of ‘J’ to get all

the records

