
CHAPTER 5

SORTING & SEARCHING

SUBJECT:DATA 

STRUCTURE

CODE:3130702

PREPARED BY:

ASST.PROF.PARAS NARKHEDE

(CSE DEPARTMENT,ACET)



SORTING



SORTING

➔ Sorting refers to the operation or technique of arranging and rearranging sets of data in some specific order. A 

collection of records called a list where every record has one or more fields. The fields which contain a unique value 

for each record is termed as the key field. For example, a phone number directory can be thought of as a list where 

each record has three fields - 'name' of the person, 'address' of that person, and their 'phone numbers'. Being unique 

phone number can work as a key to locate any record in the list.

➔ Sorting is the operation performed to arrange the records of a table or list in some order according to some specific 

ordering criterion. Sorting is performed according to some key value of each record.

➔ The records are either sorted either numerically or alphanumerically. The records are then arranged in ascending or 

descending order depending on the numerical value of the key. Here is an example, where the sorting of a lists of 

marks obtained by a student in any particular subject of a class.



BUBBLE SORT

➔ Bubble Sort Algorithm is used to arrange N elements in ascending order, and 

for that, you have to begin with 0th element and compare it with the first 

element. If the 0th element is found greater than the 1st element, then the 

swapping operation will be performed, i.e., the two values will get 

interchanged. In this way, all the elements of the array get compared.





ALGORITHM FOR BUBBLE SORT

➔ algorithm Bubble_Sort(list)

➔ Pre: list != fi

➔ Post: list is sorted in ascending order for all values

➔ for i <- 0 to list:Count - 1

➔ for j <- 0 to list:Count - 1

➔ if list[i] < list[j]

➔ Swap(list[i]; list[j])

➔ end if

➔ end for

➔ end for

➔ return list

➔ end Bubble_Sort



SELECTION SORT

➔ The selection is a straightforward process of sorting values. In this 

method, to sort the data in ascending order, the 0th element is 

compared with all other elements. If the 0th element is found to be 

greater than the compared element, the two values get 

interchanged. In this way after the first iteration, the smallest 

element is placed at 0th position. The technique is repeated until 

the full array gets sorted.





ALGORITHM FOR SELECTION SORT

➔Set MIN to location 0

➔Search the minimum element in the list

➔Swap with value at location MIN

➔ Increment MIN to point to next element

➔Repeat until list is sorted



QUICK SORT

➔ Quick sort is one of the most famous sorting algorithms based on divide and conquers 

strategy which results in an O(n log n) complexity. So, the algorithm starts by picking 

a single item which is called pivot and moving all smaller items before it, while all 

greater elements in the later portion of the list. This is the main quick sort operation 

named as a partition, recursively repeated on lesser and greater sublists until their size 

is one or zero - in which case the list is wholly sorted. Choosing an appropriate pivot, 

as an example, the central element is essential for avoiding the severely reduced 

performance of O(n2).





ALGORITHM FOR QUICK SORT

➔ algorithm Quick_Sort(list)

➔ Pre: list 6= fi

➔ Post: the list has been sorted in ascending order

➔ if list.Count = 1 // list already sorted

➔ return list

➔ end if

➔ pivot <- Median_Value(list)

➔ for i <- 0 to list.Count - 1

➔ if list[i] = pivot

➔ equal.Insert(list[i])



ALGORITHM FOR QUICK SORT

➔ end if

➔ if list[i] < pivot

➔ less.Insert(list[i])

➔ end if

➔ if list[i] > pivot

➔ greater.Insert(list[i])

➔ end if

➔ end for

➔ return Concatenate(Quick_Sort(less), equal, Quick_Sort(greater))

➔ end Quick_sort



MERGE SORT

➔ Merge sort is another sorting technique and has an algorithm that has a reasonably 

proficient space-time complexity - O(n log n) and is quite trivial to apply. This 

algorithm is based on splitting a list, into two comparable sized lists, i.e., left and 

right and then sorting each list and then merging the two sorted lists back together as 

one.

➔ Merge sort can be done in two types both having similar logic and way of 

implementation. These are:

◆ Top down implementation

◆ Bottom up implementation





ALGORITHM FOR MERGE SORT

➔ algorithm Merge_Sort(list)

➔ Pre: list 6= fi

➔ Post: list has been sorted into values of ascending order

➔ if list.Count = 1 // when already sorted

➔ return list

➔ end if

➔ m <- list.Count = 2

➔ left <- list(m)

➔ right <- list(list.Count - m)

➔ for i <- 0 to left.Count - 1



ALGORITHM FOR MERGE SORT

➔ left[i] <- list[i]

➔ end for

➔ for i <- 0 to right.Count -1

➔ right[i] <- list[i]

➔ end for

➔ left <- Merg_Sort(left)

➔ right <- Merge_Sort(right)

➔ return MergeOrdered(left, right)

➔ end Merge_Sort



SEARCHING



SEARCHING

➔ Searching is an operation or a technique that helps finds the place of a given 

element or value in the list. Any search is said to be successful or 

unsuccessful depending upon whether the element that is being searched is 

found or not. Some of the standard searching technique that is being followed 

in the data structure is listed below:

◆ Linear Search or Sequential Search

◆ Binary Search



SEQUENTIAL SEARCH

➔ This is the simplest method for searching. In this technique of searching, the element to be 

found in searching the elements to be found is searched sequentially in the list. This 

method can be performed on a sorted or an unsorted list (usually arrays). In case of a 

sorted list searching starts from 0th element and continues until the element is found from 

the list or the element whose value is greater than (assuming the list is sorted in ascending 

order), the value being searched is reached.

➔ As against this, searching in case of unsorted list also begins from the 0th element and 

continues until the element or the end of the list is reached



EXAMPLE

The list given below is the list of elements in an unsorted array. The array contains ten elements. 

Suppose the element to be searched is '46', so 46 is compared with all the elements starting from 

the 0th element, and the searching process ends where 46 is found, or the list ends.

The performance of the linear search can be measured by counting the comparisons done to find 

out an element. The number of comparison is 0(n).



ALGORITHM FOR SEQUENTIAL SEARCH

➔ It is a simple algorithm that searches for a specific item inside a list. It operates looping on each element O(n) unless and until a 

match occurs or the end of the array is reached.

➔ algorithm Seqnl_Search(list, item)

➔ Pre: list != ;

➔ Post: return the index of the item if found, otherwise: 1

➔ index <- fi

➔ while index < list.Cnt and list[index] != item //cnt: counter variable

➔ index <- index + 1

➔ end while

➔ if index < list.Cnt and list[index] = item

➔ return index

➔ end if

➔ return: 1

➔ end Seqnl_Search



BINARY SEARCH

➔ Binary search is a very fast and efficient searching technique. It requires the list to be in sorted order. 

In this method, to search an element you can compare it with the present element at the center of the 

list. If it matches, then the search is successful otherwise the list is divided into two halves: one from 

the 0th element to the middle element which is the center element (first half) another from the center 

element to the last element (which is the 2nd half) where all values are greater than the center element.

➔ The searching mechanism proceeds from either of the two halves depending upon whether the target 

element is greater or smaller than the central element. If the element is smaller than the central element, 

then searching is done in the first half, otherwise searching is done in the second half.





ALGORITHM FOR BINARY SEARCH

➔ algorithm Binary_Search(list, item)

➔ Set L to 0 and R to n: 1

➔ if L > R, then Binary_Search terminates as unsuccessful

➔ else

➔ Set m (the position in the mid element) to the floor of (L + R) / 2

➔ if Am < T, set L to m + 1 and go to step 3

➔ if Am > T, set R to m: 1 and go to step 3

➔ Now, Am = T,

➔ the search is done; return (m)




