
NAME:
ENROLLMENTNO:
BATCHNO:

YEAR:

LABORATORY MANUAL

 DATABASE MANAGEMENT SYSTEM

SUBJECT CODE: 3130703
COMPUTER SCIENCE & ENGINEERING

DEPARTMENT
B.E. 3rd SEMESTER

Amiraj College of Engineering and Technology,

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.

Amiraj College of Engineering and Technology,

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.

CERTIFICATE

This is to certify that Mr. / Ms. __
Of class____________________ Enrolment No ___________________________has
Satisfactorily completed the course in ____________________________________as
by the Gujarat Technological University for ____ Year (B.E.) semester___of
Computer Science & Engineering in the Academic year ______.

Date of Submission:-

Faculty Name and Signature Head of Department
(Prof. Rupali Patel) (CSE)

COMPUTER SCIENCE & ENGINEERING
DEPARTMENT

B.E. 3rd SEMESTER
SUBJECT: DATABASE MANAGEMENT

SYSTEM
SUBJECT CODE: 3130703

List Of Experiments

Sr.
No.

Title Date of

submission

Sign

Remark

1 To study DDL-create and DML-insert
commands.

2 Create the below given table and insert the
data accordingly.

3
To Perform various data manipulation
commands, aggregate functions and sorting
concept on all created tables

4 To To study Single-row functions.
5 Displaying data from Multiple Tables (join).
6 To apply the concept of Aggregating Data

using Group functions.
7 To solve queries using the concept of sub

query
8 To Manipulate Data using various SQL

commands.
9 To apply the concept of security and

privileges.

10 To study Transaction control commands.

PRACTICAL -1

AIM: To study DDL-create and DML-insert commands.

Create tables according to the following definition.
CREATE TABLE DEPOSIT (ACTNO VARCHAR2(5) ,CNAME VARCHAR2(18) ,
BNAME VARCHAR2(18) , AMOUNT NUMBER(8,2) ,ADATE DATE);

CREATE TABLE BRANCH(BNAME VARCHAR2(18),CITY VARCHAR2(18));

CREATE TABLECUSTOMERS(CNAME VARCHAR2(19) ,CITY VARCHAR2(18));
CREATE TABLE BORROW(LOANNO VARCHAR2(5), CNAME VARCHAR2(18),
BNAME VARCHAR2(18), AMOUNT NUMBER (8,2));

Insert the data as shown below.

DEPOSIT

BRANCH

CUSTOMERS

 BORROW

 DEPOSIT:
INSERT INTO DEPOSIT VALUES('100',’ANIL’,'VRCE',1000,'1-MAR-95');
INSERT INTO DEPOSIT VALUES('101','SUNIL','AJNI',5000,'4-JAN-96');
INSERT INTO DEPOSIT VALUES('102','MEHUL','KAROLBAGH',3500,'17-NOV-95');
INSERT INTO DEPOSIT VALUES('104','MADHURI','CHANDI',1200,'17-DEC-95');
INSERT INTO DEPOSITVALUES('105','PRMOD','M.G.ROAD',3000,'27-MAR-96');
INSERT INTO DEPOSIT VALUES('106','SANDIP','ANDHERI',2000,'31-MAR-96');
INSERT INTO DEPOSIT VALUES('107','SHIVANI','VIRAR',1000,'5-SEP-95');
INSERT INTO DEPOSIT VALUES('108','KRANTI','NEHRUPLACE',5000,'2-JUL-95');
INSERT INTO DEPOSIT VALUES('109','MINU','POWAI',7000,'10-AUG-95');

BRANCH:
INSERT INTO BRANCH VALUES('VRCE','NAGPUR');
INSERT INTO BRANCH VALUES('AJNI','NAGPUR');
INSERT INTO BRANCH VALUES('KAROLBAGH','DELHI');
INSERT INTO BRANCH VALUES('CHANDI','DELHI');
INSERT INTO BRANCH VALUES('DHARAMPETH','NAGPUR');
INSERT INTO BRANCH VALUES('M.G.ROAD','BANGLORE');
INSERT INTO BRANCH VALUES('ANDHERI','BOMBAY');
INSERT INTO BRANCH VALUES('VIHAR','BOMBAY');

INSERT INTO BRANCH VALUES('NEHRU PLACE','DELHI');
INSERT INTO BRANCH VALUES('POWAI','BOMBAY');

CUSTOMER:
INSERT INTO CUSTOMERS VALUES ('ANIL','CALCUTTA');
INSERT INTO CUSTOMERS VALUES ('SUNIL','DELHI');
INSERT INTO CUSTOMERS VALUES ('MEHUL','BARODA');
INSERT INTO CUSTOMERS VALUES ('MANDAR','PATNA');
INSERT INTO CUSTOMERS VALUES ('MADHURI','NAGPUR');
INSERT INTO CUSTOMERS VALUES ('PRAMOD','NAGPUR');
INSERT INTO CUSTOMERS VALUES ('SANDIP','SURAT');
INSERT INTO CUSTOMERS VALUES ('SHIVANI','BOMBAY');
INSERT INTO CUSTOMERS VALUES ('KRANTI','BOMBAY');
INSERT INTO CUSTOMERS VALUES ('NAREN','BOMBAY');

BORROW:
INSERT INTO BORROW VALUES ('201','ANIL','VRCE',1000);
INSERT INTO BORROW VALUES ('206','MEHUL','VRCE',5000);
INSERT INTO BORROW VALUES ('311','SUNIL','DHARAMPETH',3000);
 INSERT INTO BORROW VALUES ('321','MADHURI','ANDHERI',2000);
INSERT INTO BORROW VALUES ('375','PRMOD','VIHAR',8000);
INSERT INTO BORROW VALUES ('481','KRANTI','NEHRU PLACE',3000);

From the above given tables perform the following queries:

1. Describe deposit, branch.

DESC DEPOSIT;

DESC BRANCH;

2. Describe borrow, customers.
DESC BORROW;

DESC CUSTOMERS;

3. List all data from table DEPOSIT.
SELECT * FROM DEPOSIT;

4. List all data from table BORROW.
SELECT * FROM BORROW;

5. List all data from table CUSTOMERS.
SELECT * FROM CUSTOMERS;

6. List all data from table BRANCH.
SELECT * FROM BRANCH;

7. Give account no and amount of depositors.
SELECT ACT NO,AMOUNT FROM DEPOSIT;

8. Give name of depositors having amount greater than 4000.
SELECT CNAME FROM DEPOSITE WHERE AMOUNT >4000;

9. Give name of customers who opened account after date '1-12-96'.
SELECT C_NAME FROM DEPOSITE WHERE DATE > ‘1-DEC-96’;

PRACTICAL -2

AIM: Create the below given table and insert the data accordingly.
Create Table Job (job_id, job_title, min_sal, max_sal);

Create table Employee (emp_no, emp_name, emp_sal, emp_comm, dept_no);

Create table deposit(a_no,cname,bname,amount,a_date);

Create table borrow(loanno,cname,bname,amount);

Insert following values in the table Employee.

Insert following values in the table job.

Insert following values in the table deposit.

Perform following queries

1. Retrieve all data from employee, jobs and deposit.

SELECT * FROM EMPLOYEE;

SELECT * FROM JOB;

SELECT * FROM DEPOSIT;

2. Give details of account no. and deposited rupees of customershaving account
opened between dates 01-01-06 and 25-07-06.
SELECT ACC_NO, AMMOUNT FROM DEPOSITE
WHERE ADATE BETWEEN ‘1-JAN-06’ AND ’25-
JUL-06’;

3. Display all jobs with minimum salary is greater than 4000.

SELECT * FROM JOB WHERE MIN_SAL > 4000.

4. Display name and salary of employee whose department no is 20. Give alias
name to name of employee.

SELECT EMP_NAME AS “NAME”,EMP_SAL FROM EMPLOYEE WHERE
DEPT_NO=20;

5. Display employee no,name and department details of thoseemployee whose

department lies in(10,20)
SELECT EMP_NO,EMP_NAME,DEPT_NO FROM
EMPLOYEE WHERE DEPT_NO IN (10,20);

6. Display all employee whose name start with ‘A’ and third character is ‘‘a’.
SELECT * FROM EMPLOYEE WHERE NAME LIKE ‘A_a%’;

7. Display name, number and salary of those employees whose name is 5 characters

long and first three characters are ‘Ani’.

SELECT EMP_NAME,EMP_NO,EMP_SAL FROM EMPLOYEE WHERE
EMP_NAME LIKE ‘Ani ’;

8. Display the non-null values of employees and also employee name second

character should be ‘n’ and string should be 5 character long.
SELECT * FROM EMPLOYEE WHERE EMP_COMM IS NOT NULL AND
EMP_NAME LIKE ‘_n ’;

9. Display the null values of employee and also employee name’s third character

should be ‘a’.
SELECT * FROM EMPLOYEE WHERE
EMP_COMM IS NULL AND EMP_NAME LIKE
‘ a%’;

10. What will be output if you are giving LIKE predicate as ‘%_%’ ESCAPE‘\’
SELECT * FROM JOB WHERE JOB_ID LIKE ‘%_%’ ESCAPE ‘\’;

PRACTICAL -3

AIM: To Perform various data manipulation commands, aggregate
functions and sorting concept on all created tables.

1. List total deposit from deposit.

SELECT SUM (AMOUNT) FROM DEPOSIT;

2. List total loan from karolbagh branch.

SELECT SUM (AMOUNT) FROM BORROW WHERE
BNAME='KAROLBAGH';

3. Give maximum loan from branch vrce.

SELECT MAX (AMOUNT) FROM BORROW_42 WHERE B_NAME=’VRCE’;

4. Count total number of customers.

SELECT COUNT (CNAME) FROM CUSTOMERS;

5. Count total number of customer’s cities.

SELECT COUNT (DISTINCT CITY) FROM CUSTOMERS;

6. Create table supplier from employee with all the columns.

CREATE TABLE SUPPLIER AS SELECT * FROM EMPLOYEE;

7. Create table sup1 from employee with first two columns.

CREATE TABLE SUP1 AS SELECT EMP_NO,EMP_NAME FROM
EMPLOYEE;

8. Create table sup2 from employee with no data.

CREATE TABLE SUPPLIER AS SELECT * FROM EMPLOYEE WHERE
EMP_NO=NULL;

9. Insert the data into sup2 from employee whose second charactershould be ‘n’

and string should be 5 characters long in employee name field.
INSERT INTO SUP2 (ACTNO) SELECT (EMP_NO) FROM EMPLOYEE WHERE
EMP_NAME LIKE '_a ';

10. Delete all the rows from sup1.

TRUNCATE TABLE SUP1;

11. Delete the detail of supplier whose sup_no is 103.

DELETE FROM SUPPLIER WHERE SUP_NO=103;

12. Rename the table sup2.

RENAME SUP2 TO SUP3;

13. Destroy table sup1 with all the data.

DROP TABLE SUP1;

14. Update the value dept_no to 10 where second character of emp. nameis ‘m’.

UPDATE EMPLOYEE SET DEPT_NO=10 WHERE EMP_NAME LIKE ‘_m%’;

15. Update the value of employee name whose employee number is 103.

UPDATE EMPLOYEE SET EMP_NAME=’DARSHAN’ WHERE EMP_NO=103;

PRACTICAL -4

AIM: To To study Single-row functions.

1. Write a query to display the current date. Label the column Date.
SELECT SYSDATE AS "DATE" FROM DUAL;

2. For each employee, display the employee number, job, salary, and salary

increased by 15% and expressed as a whole number. Label the column New
Salary

SELECT EMP_NO,EMP_NAME,EMP_SAL,EMP_SAL+(EMP_SAL*15/100) "New
Salary" FROM EMPLOYEE;

3. Modify your query no 4.(2) to add a column that subtracts the oldsalary from the

new salary. Label the column Increase.

SELECT EMP_NO,EMP_NAME,EMP_SAL,EMP_SAL+(EMP_SAL*15/100) "New
Salary",(EMP_SAL+(EMP_SAL*15/100))- EMP_SAL "INCREASE" FROM
EMPLOYEE;

4. Write a query that displays the employee’s names with the first letter capitalized

and all other letters lowercase, and the length of the names, for all employees
whose name starts with J, A, or M. Give each column an appropriate label. Sort
the results by the employees’ last names.

SELECT INITCAP(EMP_NAME) "Name", LENGTH(EMP_NAME) "Length of
Name" FROM EMPLOYEE WHERE EMP_NAME LIKE 'J%' OR EMP_NAME
LIKE 'A%' OR EMP_NAME LIKE 'M%' ORDER BY
EMP_NAME;

5. Write a query that produces the following for each employee: earns monthly.

SELECT EMP_NAME ||' earns '||EMP_SAL||' monthly' FROM EMPLOYEE;

6. Display the hiredate of emp in a format that appears as Seventh of June 1994
12:00:00 AM.
SELECT TO_CHAR(SYSDATE, 'fmDDTH') || ' of ' || TO_CHAR(SYSDATE,
'fmMonth') || ', ' ||TO_CHAR(SYSDATE,
'YYYY') || ', ' || TO_CHAR(SYSDATE,
'HH24:MI:SS AM') "DATE" FROM DUAL;

7. Write a query to calculate the annual compensation of all employees

(sal+comm.).

SELECT EMP_SAL+EMP_COMM "COMPENSATION" FROM EMPLOYEE;

PRACTICAL -5

AIM: Displaying data from Multiple Tables (join).

1. Give details of customers ANIL.

SELECT D1.Acc_no, D1.B_NAME, D1.AMMOUNT, D1.ADATE, C1.CITY,
B1.CITY FROM DEPOSITE D1, CUSTOMER9 C1, BRANCH B1 WHERE
D1.C_NAME = C1.CNAME AND D1.B_NAME=B1.BNAME AND
D1.C_NAME=’ANIL’;

2. Give name of customer who are borrowers and depositors andhaving living city
nagpur.

SELECT C1.CNAME FROM CUSTOMER9 C1,DEPOSITE D1,BORROW B1
WHERE C1.CITY=’NAGPUR’ AND C1.CNAME=D1.C_NAME AND D1.
C_NAME = B1.CNAME;

3. Give city as their city name of customers having same living branch.

SELECT C.CITY FROM CUSTOMER33 C, BRANCH B WHERE C.CITY=B.CITY
;

4. Write a query to display the last name, department number, and department

name for all employees.

SELECT E.EMP_NAME ,E.DEPT_NO,D. ACC_NO FROM
EMPLOYEEE,DEPOSITE D WHERE E.DEPT_NO=D. ACC_NO;

5. Create a unique listing of all jobs that are in department 30. Include the location
of the department in the output.

SELECT J.JOB_ID,J.JOB_TITLE,E.DEPT_NO,D.DEPT_CITY FROM JOB
J,EMPLOYEE E,DEPARTMENT D WHERE J.JOB_ID=E.JOB_ID AND
E.DEPT_NO=E.DEPT_NO AND E.DEPT_NO=30;

6. Write a query to display the employee name, department number, and for all

employees who work in RAJKOT

SELECT EMP_NAME , EMP_NAME FROM EMPLOYEE WHERE
CITY=’RAJKOT’;

7. Display the employee last name and employee number along with their
manager’s last name and manager number. Label the columns Employee, Emp#,
Manager, and Mgr#, respectively.

SELECT E.EMP_NAME”EMPLOYEE”,E.EMP_NO”EMP #”,EM.MNG_ NAME
FROM ” MANAGER”, EM.MNG_NO ”MGR#”, FROM EMPLOYEE E
EMPLOYEE_MANAGER EM WHERE E.EMP_NO=EM.EMP_NO;

8. Create a query to display the name and hire date of any employeehired after

employee SCOTT.

SELECT E.EMP_NAME, EM.EMP_HIREDATE FROM EMPLOYEE
E,EMPLOYEE_MANAGER EM WHERE E.EMP_NO =EM.EMP_NO AND EM.

EMP_ HIREDATE > (SELECT EMP_HIREDATE FROM EMPLOYEE _MANAG
ER WHERE EMP_NAME=’SCOTT’ ;

PRACTICAL -6

AIM: To apply the concept of Aggregating Data using Group functions.

1. List total deposit of customer having account date after 1-jan-96.

SELECT SUM(AMOUNT) FROM DEPOSIT WHERE ADATE >’ 1-jan-96’;

2. List total deposit of customers living in city Nagpur.

SELECT SUM(D.AMMOUNT) FROM DEPOSITE D ,CUSTOMER12 C WHERE
C.CITY=’NAGPUR’ AND C.CNAME=D.C_NAME;

3. List maximum deposit of customers living in bombay.

SELECT MAX(D.AMMOUNT) FROM DEPOSITE D,CUSTOMER12 C WHERE
C.CITY=’BOMBAY’ AND C.CNAME=D.C_NAME;

4. Display the highest, lowest, sum, and average salary of allemployees. Label the

columns Maximum, Minimum, Sum, and Average, respectively. Round your
results to the nearest whole number.

SELECT MAX (EMP_SAL) “MAXIMUM” ,MIN(EMP_SAL) “MINIMUM”,SUM
(EMP_SAL) “SUM”, AVG (EMP_SAL) “AVERAGE” FROM EMPLOYEE;

5. Write a query that displays the difference between the highest and lowest
salaries. Label the column DIFFERENCE.

SELECT MAX(EMP_SAL)-MIN(EMP_SAL) "DIFFERENCE" FROM
EMPLOYEE;

6. Create a query that will display the total number of employees and, of that total,

the number of employees hired in 1995, 1996, 1997, and 1998

SELECT COUNT (EMP_NO) FROM EMPLOYEE;

7. Find the average salaries for each department without displayingthe respective

department numbers.

SELECT AVG(EMP_SAL) FROM EMPLOYEE GROUP BY DEPT_NO;

8. Write a query to display the total salary being paid to each job title, within each

department.

SELECT DEPT_NO,SUM(EMP_SAL) FROM EMPLOYEE GROUP BY
DEPT_NO;

9. Find the average salaries > 2000 for each department without displaying the

respective department numbers.

SELECT AVG(EMP_SAL) FROM EMPLOYEE GROUP BY DEPT_NO HAVING
AVG(EMP_SAL)
> 2000;

10. Display the job and total salary for each job with a total salaryamount exceeding

3000, in which excludes president and sorts the list by the total salary.

SELECT DEPT_NO,SUM(EMP_SAL) FROM EMPLOYEE GROUP BY DEPT_NO
HAVING SUM(EMP_SAL) > 3000 ORDER BY SUM(EMP_SAL);

11. List the branches having sum of deposit more than 5000 and locatedin city

bombay.

SELECT D.B_NAME FROM DEPOSITE D , BRANCH B WHERE D.B_NAME
=B.BNAME AND B.CITY=’BOMBAY’ GROUP BY D.B_NAME HAVING
SUM(D.AMMOUNT) > 5000;

PRACTICAL -7

AIM: To solve queries using the concept of sub query.

1. Write a query to display the last name and hire date of any employeein the same
department as SCOTT. Exclude SCOTT.

SELECT EMP_NAME FROM EMPLOYEE WHERE DEPT_NO =
SELECT DEPT_NO FROM EMPLOYEE WHERE EMP_NAME LIKE
‘SCOTT’ AND EMP_NAME <> ‘SCOTT’;

2. Give name of customers who are depositors having same branch cityof mr. sunil.

SELECT D1.CNAME FROM DEPOSITE D1, BRANCH B2, D1.BNAME AND
B2.CITY IN (SELECT B1.CITY FROM DEPOSITE D2 BRANCH B1 WHERE
D2.CNAME=’ANIL’ AND D2.BNAME=B1.BNAME);

3. Give deposit details and loan details of customer in same citywhere pramod is

living.

SELECT D1.ACTNO,D1.BNAME,D1.AMOUNT,D1.ADATE ,BR1.LOANNO,
BR1. BNAME BR1.AMOUNT FROM DEPOSITE D1 BORROW BR1
CUSTOMER C1 WHERE C1.CNAME = D1.CNAME AND
D1.CNAME=BR1.CNAME AND C1.CITY IN (SELECT C2.CITY FROM
CUSTOMER C2 WHERE C2.CNAME =’PRAMOD’);

4. Create a query to display the employee numbers and last names ofall employees
who earn more than the average salary. Sort the results in ascending order of
salary.

 SELECT EMP_NO,EMP_NAME FROM EMPLOYEE WHERE EMP_SAL >
(SELECT AVG(EMP_SAL) FROM EMPLOYEE ORDER BY EMP_SAL);

5. Give names of depositors having same living city as mr. anil andhaving deposit

amount greater than 2000
SELECT D1.CNAME FROM DEPOSIT
D1.AMOUNT > 2000 D1.CNAME=C1.CNAME AND C1.CITY IN (SELECT
C2.CITY FROM CUS TOMER C2 WHERE C2.CNAME=’ANIL’);

6. Display the department number, name, and job for every employee inthe

Accounting department.
SELECT D.DEPT_NO,D.DEPT_NAME,E.JO
D,EMPLOYEE E WHERE D.DEPT_NO=E.DEPT_NO AND D.DEPT_NAME
=’ACCOUNTING’;

7. List the name of branch having highest number of depositors.

SELECT D1.BNAME FROM DEPOSIT D1 GROUP BY D1.BNAME HAVING CO
UNT(D1.CNAME) > = ALL (SELECT COUNT
GROUP BY D2.BNAME);

8. Give the name of cities where in which the maximum numbers of branches are

located.

Give names of depositors having same living city as mr. anil andhaving deposit
amount greater than 2000.
SELECT D1.CNAME FROM DEPOSIT D1,CUSTOMER C1 WHERE
D1.AMOUNT > 2000 D1.CNAME=C1.CNAME AND C1.CITY IN (SELECT
C2.CITY FROM CUS TOMER C2 WHERE C2.CNAME=’ANIL’);

Display the department number, name, and job for every employee inthe
Accounting department.
SELECT D.DEPT_NO,D.DEPT_NAME,E.JOB_ID FROM DEPARTMENT
D,EMPLOYEE E WHERE D.DEPT_NO=E.DEPT_NO AND D.DEPT_NAME

List the name of branch having highest number of depositors.
SELECT D1.BNAME FROM DEPOSIT D1 GROUP BY D1.BNAME HAVING CO
UNT(D1.CNAME) > = ALL (SELECT COUNT (D2.CNAME) FROM DEPOSIT D2
GROUP BY D2.BNAME);

Give the name of cities where in which the maximum numbers of branches are

Give names of depositors having same living city as mr. anil andhaving deposit

D1.AMOUNT > 2000 D1.CNAME=C1.CNAME AND C1.CITY IN (SELECT

Display the department number, name, and job for every employee inthe

B_ID FROM DEPARTMENT
D,EMPLOYEE E WHERE D.DEPT_NO=E.DEPT_NO AND D.DEPT_NAME

SELECT D1.BNAME FROM DEPOSIT D1 GROUP BY D1.BNAME HAVING CO
(D2.CNAME) FROM DEPOSIT D2

Give the name of cities where in which the maximum numbers of branches are

SELECT B1.CITY FROM BRANCH B1 GROUP BY B1.CITY HAVING COUNT
(B1.BNAME) > ALL (SELECT COUNT(B2.BNAME) FROM BRANCH B2
WHERE B1.CITY = B2.CITY GROUP BY B2.CITY);

9. Give name of customers living in same city where maximumdepositors are

located.

SELECT C1.NAME FROM CUSTOMER C1 WHERE C1.CITY IN (SELECT C2.
CITY FROM DEPOSIT D1,CUSTOMER C2 WHERE C2.CNAME = D1.C NA ME)
GROUP BY C2.CITY HAVING COUNT (D1.CNAME) > ALL (SELECT COUNT
(D2.CNAME) FROM DEPOSIT D2 CUSTOMER C3 WHERE D2.CNAME =
C3.CNAME GROUP BY C3.CITY));

SELECT B1.CITY FROM BRANCH B1 GROUP BY B1.CITY HAVING COUNT
(B1.BNAME) > ALL (SELECT COUNT(B2.BNAME) FROM BRANCH B2
WHERE B1.CITY = B2.CITY GROUP BY B2.CITY);

Give name of customers living in same city where maximumdepositors are

SELECT C1.NAME FROM CUSTOMER C1 WHERE C1.CITY IN (SELECT C2.
CITY FROM DEPOSIT D1,CUSTOMER C2 WHERE C2.CNAME = D1.C NA ME)

BY C2.CITY HAVING COUNT (D1.CNAME) > ALL (SELECT COUNT
(D2.CNAME) FROM DEPOSIT D2 CUSTOMER C3 WHERE D2.CNAME =
C3.CNAME GROUP BY C3.CITY));

SELECT B1.CITY FROM BRANCH B1 GROUP BY B1.CITY HAVING COUNT
(B1.BNAME) > ALL (SELECT COUNT(B2.BNAME) FROM BRANCH B2

Give name of customers living in same city where maximumdepositors are

SELECT C1.NAME FROM CUSTOMER C1 WHERE C1.CITY IN (SELECT C2.
CITY FROM DEPOSIT D1,CUSTOMER C2 WHERE C2.CNAME = D1.C NA ME)

BY C2.CITY HAVING COUNT (D1.CNAME) > ALL (SELECT COUNT
(D2.CNAME) FROM DEPOSIT D2 CUSTOMER C3 WHERE D2.CNAME =

PRACTICAL -8

AIM: To Manipulate Data using various SQL commands.

1. Give 10% interest to all depositors.

UPDATE DEPOSIT SET AMOUNT = AMOUNT + (AMOUNT*10/100);

2. Give 10% interest to all depositors having branch vrce

UPDATE DEPOSITE SET AMMOUNT = AMMOUNT + (AMMOUNT*10/100)
WHEREB_NAME =’vrce’;

3. Give 10% interest to all depositors living in nagpur and having branch city
bombay.

UPDATE DEPOSITE SET AMMOUNT = AMMOUNT + (AMMOUNT*10/100)
WHERE C_NAME IN (SELECT CNAME FROM CUSTOMER12 WHERE
CITY=’NAGPUR’) AND B_NAME IN(SELECT BNAME FROM BRANCH
WHERE CITY=’BOMBAY’);

4. Write a query which changes the department number of all employees with
empno 7788’s job to employee 7844’current department number.
Transfer 10 Rs from account of anil to sunil if both are having same branch.

UPDATE DEPOSITE SET AMMOUNT =AMMOUNT -10 WHERE C_NAME
=’ANIL’ AND B_NAME IN (SELECT D1.B_NAME FROM DEPOSIT D1
WHERE D1.C_NAME = ’SUNIL’);

UPDATE DEPOSITE SET AMMOUNT=AMMOUNT+10 WHERE
C_NAME=’SUNIL’ AND B_NAME IN (SELECT D2.B_NAME FROM
DEPOSIT D2 WHERE D2.C_NAME=’ANIL’);

5. Give 100 Rs more to all depositors if they are maximum

respective branch.
UPDATE DEPOSITE SET AMMOUNT = AMMOUNT + 100 WHERE
C_NAME IN (SELECT D1.C_NAME FROM DEPOSITE D1 GROUP BY
D1.B_NAME HAVING AVG(D1.AMMOUNT) > = ALL (SELECT
MAX(D2.AMMOUNT) FROM DEPOSITE D2 WHERE D1.B_NAME =
D2.B_NAME GROUP BY D2.B_NAME));

6. Delete depositors of branches having number of customers between 1 to

 DELETE FROM DEPOSITE WHERE C_NAME IN (SELECT D1.C_NAME
FROM DEPOSITE
COUNT(D1.C_NAME) BETWEEN 1 AND

7. Delete deposit of vijay.
 DELETE FROM DEPOSITE WHERE C_NAME=’VIJAY’;

8. Delete borrower of branches having average loan less than

 DELETE FROM BORROW WHERE CNAME IN (SELECT B.CNAME FROM

UPDATE DEPOSITE SET AMMOUNT=AMMOUNT+10 WHERE
C_NAME=’SUNIL’ AND B_NAME IN (SELECT D2.B_NAME FROM
DEPOSIT D2 WHERE D2.C_NAME=’ANIL’);

Give 100 Rs more to all depositors if they are maximum depositors in their

UPDATE DEPOSITE SET AMMOUNT = AMMOUNT + 100 WHERE
C_NAME IN (SELECT D1.C_NAME FROM DEPOSITE D1 GROUP BY
D1.B_NAME HAVING AVG(D1.AMMOUNT) > = ALL (SELECT
MAX(D2.AMMOUNT) FROM DEPOSITE D2 WHERE D1.B_NAME =

UP BY D2.B_NAME));

Delete depositors of branches having number of customers between 1 to
DELETE FROM DEPOSITE WHERE C_NAME IN (SELECT D1.C_NAME

 D1 GROUP BY D1.B_NAME HAVING
COUNT(D1.C_NAME) BETWEEN 1 AND 3);

DELETE FROM DEPOSITE WHERE C_NAME=’VIJAY’;

Delete borrower of branches having average loan less than 1000.
DELETE FROM BORROW WHERE CNAME IN (SELECT B.CNAME FROM

UPDATE DEPOSITE SET AMMOUNT=AMMOUNT+10 WHERE
C_NAME=’SUNIL’ AND B_NAME IN (SELECT D2.B_NAME FROM

depositors in their

UPDATE DEPOSITE SET AMMOUNT = AMMOUNT + 100 WHERE
C_NAME IN (SELECT D1.C_NAME FROM DEPOSITE D1 GROUP BY
D1.B_NAME HAVING AVG(D1.AMMOUNT) > = ALL (SELECT
MAX(D2.AMMOUNT) FROM DEPOSITE D2 WHERE D1.B_NAME =

Delete depositors of branches having number of customers between 1 to 3.
DELETE FROM DEPOSITE WHERE C_NAME IN (SELECT D1.C_NAME

HAVING

DELETE FROM BORROW WHERE CNAME IN (SELECT B.CNAME FROM

BORROW B GROUP BY B.BNAME HAVING AVG(B.AMOUNT)< 1000);

PRACTICAL - 9

AIM: To apply the concept of security and privileges.
This chapter describes PointBase security and privileges. Schemas are an integral part of
security in PointBase. When creating a PointBase user, they do not have any access privileges
to schemas or other data objects within the database. The PointBase RDBMS only permits
the schema owner to grant privileges to the schema and data objects within the schema. The
schema owner can grant privileges to the following data objects in the schema:

 Tables
 Columns
 SQL Procedures and Functions

Table 1 describes the privileges that the schema owner can grant users for tables and
columns:
Table 1 : User Privileges for Tables and Columns

Privilege
Statements

Privilege
Description

DELETE Allows a user to delete rows from tables within the schema

INSERT Allows a user to insert rows of data into tables within the schema

REFERENCES Allows a user to set up references to primary keys within the schema

SELECT Allows a user to select rows from tables within the schema

TRIGGER Allows a user to create triggers on tables within the schema

UPDATE Allows a user to update rows in tables within the schema

EXECUTE Allows users to execute functions or stored procedures within the
schema

Granting and Revoking Privileges
When a PointBase database is first created the only user is the default user PUBLIC with a
password of PUBLIC. The PUBLIC user owns the default PUBLIC schema. For security
reasons, PointBase does not recommend using this schema to store sensitive data. Like any
PointBase user, PUBLIC must be granted the appropriate privileges to access data objects in
schema owned by other users.
The PUBLIC user can be used initially to create new users and new schema. The PUBLIC
user will own any new schema that it creates unless otherwise specified during schema
creation. New users are then able to create their own new schema and users, and grant
appropriate privileges on schema that they own. All new users must be granted privileges to
use the PUBLIC schema if this is required.
To grant the ability for a user to pass a privilege on to other users once granted, you must
specify the optional WITH GRANT OPTION qualifier when granting the privilege.
GRANT Statement Syntax
GRANT privilege-list
ON object
TO user-list [WITH GRANT OPTION]

Use the GRANT statement to grant privileges on a data object. The following describes the
GRANT statement syntax.
Privilege-list Syntax
privilege [, privilege [, privilege]...] | ALL PRIVILEGES
Privilege Syntax
SELECT [(column-name [, column-name]...)]
| DELETE
| INSERT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| REFERENCES [(column-name [, column-name]...)]
| TRIGGER [(column-name [, column-name]...)]
| EXECUTE
Usage Notes

 If you do not include one or more of these privileges in the GRANT statement, an
error will be raised.

 If the optional column-names are not specified for the SELECT, INSERT, UPDATE,
REFERENCES and TRIGGER privileges, the GRANT is applied to every column in
the table to which the grant is applied.

 If you execute a GRANT statement that contains privileges that you don't have or for
which you do not have the right to grant, then PointBase raises an error.

Object Syntax
[TABLE] table-name
|SPECIFIC routine_type specific_routine-name
|routine_type routine_name (parameter_types_list)
[TRIGGER] trigger-name

Usage Notes

 If you grant a privilege on an SQL Function or Procedure, then the user can only
EXECUTE that SQL Function or Procedure. The user cannot access tables that the
SQL Function or Procedure uses.

User-list Syntax
user [, user]... [WITH GRANT OPTION] | PUBLIC
Usage Notes

 If you do not specify WITH GRANT OPTION, the user cannot pass the same
privilege on to others. However, if you do specify WITH GRANT OPTION, you have
given the user permission to pass on the privilege to other users.

 Granting a privilege to the user PUBLIC only grants the privilege to the default
PointBase PUBLIC user and is not the same as granting a global privilege to all users.

 If you grant a privilege with the optional WITH GRANT OPTION and then grant the
same privilege without this option (without first revoking the original privilege) the
user retains the WITH GRANT OPTION.

Examples
 The following statement grants the SELECT privilege on the CUSTOMER_TBL

table to the user MARKETING_MGR.
GRANT SELECT
ON customer_tbl
TO marketing_mgr;

 The following GRANT statement allows the user FINANCIAL_MGR to delete, insert
and update rows from the DISCOUNT_CODE_TBL table; it also allows this user to
grant the same privileges to others.

GRANT DELETE,INSERT,UPDATE
ON discount_code_tbl
TO financial_mgr
WITH GRANT OPTION;

 The following GRANT statement allows the user HR_MGR to have ALL
PRIVILEGES on the table SALES_REP_DATA_TBL. However, the user HR_MGR
will only be granted privileges that the user granting the privileges has the right to
grant. For example, if the user granting the privileges does not have the right to grant
DELETE privileges, the HR_MGR will not have the delete privilege.

GRANT ALL PRIVILEGES
ON sales_rep_data_tbl
TO hr_mgr
REVOKE Statement Syntax
REVOKE [GRANT OPTION FOR] privilege_list
ON object
FROM user_name [RESTRICT | CASCADE]

The REVOKE statement takes privileges away from users. The arguments are similar to the
GRANT statement. The major difference is the additional RESTRICT or CASCADE
keyword and the GRANT OPTION FOR clause. The following describes the optional clauses
GRANT OPTION FOR and RESTRICT or CASCADE.
NOTE: If none of the privileges that you are trying to revoke actually exist, an error is raised.
RESTRICT | CASCADE
If you use RESTRICT keyword, the privilege will be revoked only from the specified user. If
the specified user granted had the WITH GRANT OPTION and granted the same privilege to
other users, they will retain the privilege.
If you use CASCADE, it will revoke the privilege and any dependent privileges as a result of
your grant. A dependent privilege is one that could exist, if you granted the privilege that
you're trying to revoke, which is what you are trying to achieve as a result of your REVOKE
statement.

If the optional RESTRICT or CASCADE keywords are not used, PointBase uses RESTRICT
by default.
GRANT OPTION FOR
If he optional GRANT OPTION FOR clause is used, the WITH GRANT OPTION right is
revoked. The actual privilege itself is not revoked. the GRANT OPTION is revoked.
CASCADE and RESTRICT may be used in the same way as a normal REVOKE statement.

PRACTICAL - 10

AIM: To study Transaction control commands.
TCL Commands in SQL- Transaction Control Language Examples: Transaction Control
Language can be defined as the portion of a database language used for maintaining
consistency of the database and managing transactions in database. A set of SQL statements
that are co-related logically and executed on the data stored in the table is known as
transaction. In this tutorial, you will learn different TCL Commands in SQL with examples
and differences between them.

1. Commit Command
2. Rollback Command
3. Savepoint Command

TCL Commands in SQL- Transaction Control Language Examples
The modifications made by the DML commands are managed by using TCL commands.
Additionally, it makes the statements to grouped together into logical transactions.
TCL Commands
There are three commands that come under the TCL:

1. Commit
The main use of Commit command is to make the transaction permanent. If there is a
need for any transaction to be done in the database that transaction permanent through
commit command. Here is the general syntax for the Commit command:
COMMIT;
For Example
UPDATE STUDENT SET STUDENT_NAME = ‘Maria’ WHERE STUDENT_NAME =
‘Meena’;
COMMIT;
By using the above set of instructions, you can update the wrong student name by the
correct one and save it permanently in the database. The update transaction gets
completed when commit is used. If commit is not used, then there will be lock on
‘Meena’ record till the rollback or commit is issued.

Now have a look at the below diagram where ‘Meena’ is updated and there is a lock on
her record. The updated value is permanently saved in the database after the use of
commit and lock is released.

2. Rollback
Using this command, the database can be restored to the last committed state.
Additionally, it is also used with savepoint command for jumping to a savepoint in a
transaction.
The general syntax for the Rollback command is mentioned below:
Rollback to savepoint-name;
For example
UPDATE STUDENT SET STUDENT_NAME = ‘Manish’ WHERE STUDENT_NAME
= ‘Meena’;
ROLLBACK;
This command is used when the user realizes that he/she has updated the wrong
information after the student name and wants to undo this update. The users can issues

ROLLBACK command and then undo the update. Have a look at the below tables to
know better about the implementation of this command.

3. Savepoint
The main use of the Savepoint command is to save a transaction temporarily. This way
users can rollback to the point whenever it is needed.
The general syntax for the savepoint command is mentioned below:
savepoint savepoint-name;
For Example
Following is the table of a school class

Use some SQL queries on the above table and then watch the results
INSERT into CLASS VALUES (101, ‘Rahul);
Commit;

UPDATE CLASS SET NAME= ‘Tyler’ where id= 101
SAVEPOINT A;
INSERT INTO CLASS VALUES (102, ‘Zack’);
Savepoint B;
INSERT INTO CLASS VALUES (103, ‘Bruno’)
Savepoint C;
Select * from Class;
The result will look like

Now rollback to savepoint B
Rollback to B;
SELECT * from Class;

Now rollback to savepoint A
rollback to A;
SELECT * from class;

