CODE: 3130704
FACULTY NAME: SUNIL PATEL

QUESTION BANK

1. BINARY SYSTEMS AND LOGIC CIRCUITS	
1 (A) BINARY SYSTEMS	
1. Do as directed(May' 15 NEW) (i) Convert (75) $)_{10}=($ \qquad $)_{2}$ (ii) Convert $(101011)_{2}=($ \qquad $)_{10}$ (iii) Convert $(10101101)_{2}=($ \qquad $)_{16}=($ \qquad $)_{8}$ (iv) What is self complementing code? Represent (472) $)_{10}$ in 2421 self complementing code.	06
2. Convert (96) 10 to its equivalent Gray code and EX-3 code.(May'15 NEW) [IMP]	04
3. Perform addition in BCD format (79) ${ }_{\mathrm{BCD}}+(16)_{\mathrm{BCD}}$ (May' 15 NEW) [IMP]	03
4. Perform subtraction of $(78)_{10}-(58)_{10}$ using 2 's complement addition method.(May' 15 NEW) [IMP]	03
5. Convert following numbers.(May'15) [IMP] (a) $(4021.2)_{5}=(\quad)_{10}$. (b) $(\mathrm{B} 65 \mathrm{~F})_{16}=(\quad)_{10}$. (c) $(630.4)_{8}=(\quad)_{10}$. (d) $(41)_{10}=()_{2}$	07
6. Using 10's complement, subtract : (72532-3250) ${ }_{10}$ (May'15) [IMP] Using 10's complement, subtract : (3250-72532) 10 Using 2's complement, subtract : (1010100-1000100) 2	07
7. Explain error detection codes and the reflected code with examples.(May'15) [IMP]	07
8. Select the most appropriate option(Dec' 14 NEW) [IMP] (i) Convert the decimal number 187 to 8 -bit binary. (A) 10111011_{2} (B) 11011101_{2} (C) 10111101_{2} (D) 10111100_{2} (ii) Convert the binary number 1001.0010_{2} to decimal. (A) 90.125 (B) 9.125 (C) 125 (D) 12.5 (vi) The 2's complement of the number 1101110 is (A) 0010001 . (C) 0010010 . (D) None.	03
9. Answer the following questions(Dec'14) [IMP] 1. Add the two numbers (A3E5) ${ }_{16}+(\text { CDA4 })_{16}$	02
10. 1. Do subtraction using 12-bit two's complement addition method(Dec'14) [IMP] $27.125-79.625$ 2. Do BCD addition for given numbers $679.6+536.8$	07
11. Convert following 1. (4E7.2) 16 $^{6}=(\text { ? })_{8} \quad$ 2. $(521.3)_{8}=(?)_{2}$ (May'14) [IMP]	06
12. Write a brief note on Gray codes. Also discuss methods for conversion from gray to binary code and vice versa.(May'14) [IMP]	07
13. Convert the following numbers as directed:(Nov'13) [IMP] (1) $(130)_{10}=(\quad)_{2}$ (2) $(1011011)_{2}=(\quad)_{10}$	07

CODE: 3130704
FACULTY NAME: SUNIL PATEL

(3) $(1011101111)_{2}=(\quad)_{8}$ (4) $(110111011101111011)_{2}=(\quad)_{16}$	
14. Convert the decimal number 250.5 to base 3, base 4 , base 7 and base $16 .(\mathbf{M a y}$ '13) [IMP]/ (May'12) [IMP] 15. Convert the decimal number 250.5 to base 3 , base 4 , base 7 , base 8 and base 16. (Dec' 12) [IMP]	$07 /$ 04 14
16. Perform the subtraction with the following decimal numbers using 1 's compliment and 2's compliments: (a) 11010-1101 , (b) 10010-10011(May'13) [IMP]	07
17. Convert the decimal number 225.225 to binary, octal and hexadecimal.(Dec'11) [IMP]/ (May'11) [IMP]	$\begin{aligned} & 06 / \\ & 03 \\ & \hline \end{aligned}$
18. Represent the decimal number 8620 in BCD, Excess-3, and Gray code(Dec'11) [IMP] / (May'11) [IMP]	03
19. Convert the following Numbers as directed:(Dec'10) [IMP] (1) $(52)_{10} \quad=(\quad)_{2}$ (2) $(101001011)_{2}=(\quad)_{10}$ (3) $(11101110)_{2}=(\quad)_{8}$ (4) $(68)_{10} \quad=(\quad)_{16}$	07
20. Define: Digital System(March'10) [IMP] Convert following Hexadecimal Number to Decimal B28, FFF, F28 Convert following Octal Number to Hexadecimal and Binary 414, 574, 725.25	07
21. Convert the following numbers to decimal(Dec'9) [IMP] (i) $(1001.101)_{2}$ (ii) $(101011.11101)_{2}$ (iii) $(0.365)_{8}$ (iv) A3E5 (v) CDA4 (vi) $(11101.001)_{2}$ (vii) B2D4	07
22. Perform the operation of subtractions with the following binary number using 2 's complement(Dec'9) [IMP] (i) $10010-10011$ (ii) $100-110000$ (iii) $11010-10000$	07
1 (B) LOGIC CIRCUITS	
23. Do as directed(May' 15 NEW) [IMP] (v) Find the logic required at R input.	01
24. Discuss NAND gate as universal gate (implement NOT, AND OR \& NOR gate using NAND gate).(May' 15 NEW) [IMP]	04
25. Define followings with respect to logic families.(May'15 NEW) [IMP]/ (i) Fan in (ii) Fan out (iii) Noise Margin	04

CODE: 3130704
FACULTY NAME: SUNIL PATEL
(iv) Propagation delay
26. Define and explain (i) fan out (ii) power dissipation and (iii) Propagation delay(May'15) [IMP]/ 07
27. Define the followings.(Dec'14 NEW) [IMP]/
(i) Propagation delay (ii) Fan in (iii) Noise Margin (iii) Negative Logic
28. Explain the digital IC Parameters.(Dec'14) [IMP]/

1. Fan in, Fan out
2. Propagation Delay
3. Power Dissipation
4. Noise Margin
5. Explain briefly: propagation delay, fan out(Dec'11) [IMP]/
6. Answer the following(May'11) [IMP]

(i) Define: Noise margin, Propagation delay	$\mathbf{0 2}$

31. Draw and explain two input (i) AND (ii) OR and (iii) EX-OR gates.(May'15) [IMP] 07
32. Select the most appropriate option(Dec'14 NEW) [IMP]
(i) If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a high output?
(A) 1
(B) 2
(C) 7
(D) 8
(ii) If a signal passing through a gate is inhibited by sending a LOW into one of the inputs, and the output is HIGH, the gate is $\mathrm{a}(\mathrm{n})$:
(A) AND
(B) NAND
(C) NOR
(D) OR
(iii) When used with an IC, what does the term "QUAD" indicate?
(A) 2 circuits
(B) 4 circuits
(C) 6 circuits
(D) 8 circuits
33. Answer the following questions(Dec'14) [IMP]/
34. Find out Y , if $\mathrm{B}=1$ and $\mathrm{A}=$ Square wave

35. explain SSI, MSI, LSI and VLSI
$\begin{array}{lll}\text { 35. 1. Give comparison for TTL and CMOS family. } & \text { (Dec'14) [IMP] } & 07\end{array}$
36. Implement basic gates using DTL logic.

| 36. Define the following terms:(Nov'13) [IMP] | $\mathbf{0 1}$ |
| :--- | :--- | :--- |

(1) Universal gate
37. (1) Draw the logic circuit for following using only NAND gates:(Nov'13) [IMP]

$$
\mathrm{F}=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}
$$

(2) Draw the logic circuit for following using only NOR gates:

$$
\mathrm{F}=\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{AB}(\mathrm{C}+\mathrm{D})
$$

38. Implement the Boolean functions. (a) $x y z+x$ ' $y+x y z$ ' (b) $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}$ and
(c) $\mathrm{F}=\mathrm{xy}+\mathrm{xy}$ ' $+\mathrm{y}^{\prime} \mathrm{z}$ with logic gates.(May'13) [IMP]
39. Given Boolean function(May'12) [IMP]
$F=x y+x^{\prime} y^{\prime}+y^{\prime} z$
40. Implement it with only OR \& NOT gates
41. Implement it with only AND \& NOT gates
42. Draw symbol and truth table for four input EX-OR gate. Explain NAND and NOR as an $\mathbf{0 6}$

CODE: 3130704
FACULTY NAME: SUNIL PATEL

universal gate.(Dec'11) [IMP]	
41. Explain NAND and NOR as an universal gates.(May'11) [IMP]/ 42. Explain with figures how NAND gate and NOR gate can be used as Universal gate.(Dec'10) [IMP]	04 07
43. Implement Boolean expression for Ex-OR gate using NAND gates only(May'11) [IMP]	04
44. Answer the following(May'11) [IMP] (i) Draw symbol and construct the truth table for three input Ex-OR gate.	02
45. Draw the logic symbol and construct the truth table for each of the following gates. (March'10) [IMP] [1] Two input NAND gate [2] Three input OR gate [3] Three input EX-NOR gate [4] NOT gate	07
46. Give classification of Logic Families and compare CMOS and TTL families (March'10) [IMP]	07
47. Implement the following Boolean functions(Dec'9) [IMP] (i) $\mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{CD})+\mathrm{BC}$ ' with NOR gates (ii) $\mathrm{F}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)(\mathrm{CD}+\mathrm{E})$ with NAND gates	07
2. BOOLEAN ALGEBRA AND MAPPING METHOD	
2 (C) BOOLEAN ALGEBRA	
48. State De-Morgan's theorems and prove with the help of truth table.(May'15 NEW) [IMP]/ 49. Define the followings.(Dec'14 NEW) [IMP]/ (i) Write D'Morgan's Theorems 50. State and prove demorgan's theorem(Dec'14) [IMP]/ 51. State and prove De-Morgan's Theorems with the help of Truth tables.(Nov'13) [IMP]/ 52. Demonstrate by means of truth tables the validity of the following Theorems of Boolean algebra(Dec'9) [IMP] (i) De Morgan's theorems for three variables	04 01 04 07 3.5
53. Prove the following Boolean identities.(Dec'14 NEW) [IMP] (i) $\mathrm{XY}+\mathrm{YZ}+\mathrm{Y}^{\prime} \mathrm{Z}=\mathrm{XY}+\mathrm{Z}$ (ii) $\mathrm{A} \cdot \mathrm{B}+\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}$	07
54. Simplify using Boolean laws and draw the logic diagram for the given expression.(Dec'14 NEW) [IMP] $\mathrm{F}=(\mathrm{ABC})^{\prime}+(\mathrm{AB})^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B} \mathrm{C} \mathrm{C}^{\prime}+\mathrm{A}(\mathrm{BC})^{\prime}+\mathrm{A} \mathrm{~B}^{\prime} \mathrm{C}$	07
55. Simplify 1. $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}($ Dec'14) [IMP]/(May'14) [IMP] 2. $(\mathrm{P}+\mathrm{Q}+\mathrm{R})\left(\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}+\mathrm{R}^{\prime}\right) \mathrm{P}$	$07 /$ 08
$\begin{array}{ll} \text { 56. Prove that: } & \text { 1. }\left(\left(\mathrm{A}^{\prime} \mathrm{B}+\mathrm{ABC}\right)^{\prime}+\mathrm{A}\left(\mathrm{~B}+\mathrm{AB}^{\prime}\right)\right)^{\prime}=0(\text { May } \\ & \text { 2. } \left.\mathrm{AB}^{\prime} \mathrm{C}\right)+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{ABC}=\mathrm{AC}+\mathrm{AB} \end{array}$	07
57. Simplify the following Boolean function to minimum numbers of literals.(May'13) [IMP] (a) $x y z+x^{\prime} y+x y z$ and (b) $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}$	07
58. Obtain the truth table of the function $\mathrm{F}=\mathrm{xy}+\mathrm{xy}{ }^{\prime}+\mathrm{y}^{\prime} \mathrm{z}$ OR Implement the Boolean functions.(May'13) [IMP]	07
59. Show that the dual of the exclusive-OR is equal to its compliment.(May'13) [IMP]	07
60. Find the complement of the following Boolean function and reduce to a minimum number of	07

CODE: 3130704
FACULTY NAME: SUNIL PATEL

$\begin{aligned} & \text { literals.(Dec'12) }[\text { IMP }] \\ & \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{ACD}+\mathrm{A}^{\prime} \mathrm{BC} \end{aligned}$	
61. Answer the following(May'11) [IMP] (i) What is the principle of Duality Theorem?	02
62. Reduce the expression:(Dec'10) [IMP] (1) $\mathrm{A}+\mathrm{B}\left(\mathrm{AC}+\left(\mathrm{B}+\mathrm{C}^{\prime}\right) \mathrm{D}\right)$ (2) $\left(\mathrm{A}+(\mathrm{BC})^{\prime}\right)^{\prime}(\mathrm{AB} \cdot+\mathrm{ABC})$	07
63. Demonstrate by means of truth tables the validity of the following Theorems of Boolean algebra(Dec'9) [IMP] (ii) The Distributive law of + over .	3.5
2 (D) MAPPING METHOD	
64. Reduce the given function using K-map and implement the same using gates.(May'15 NEW) [IMP] $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,7,11,15)+\Sigma \mathrm{d}(2,4)$	07
65. Convert $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{BC}+\mathrm{A}$ into standard minterm form.(May'15 NEW) [IMP]	03
66. Draw the truth table of full adder and implement using minimum number of logic gates.(May'15 NEW) [IMP]/	07
67. Design a combinati	04
68. Design a full-adder using two half-adder and an OR gate(May' 11) [IMP]/	07
69. With necessary sketch explain full adder in detail.(Dec'9) [IMP]	07
70. Draw the truth table of full subtractor and implement using minimum number of logic gates.(May'15 NEW) [IMP]	07
71. Express the Boolean function $\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ a sum of minterms and in sum of max terms.(May'15) [IMP]	07
72. Simplify the Boolean function $\mathrm{F}_{(\mathrm{X}, \mathrm{Y}, \mathrm{Z})}=\Sigma(2,4,5,6)$ using K - map. Explain groups. (May'15) [IMP]	07
73. Explain wired logic with examples.(May'15) [IMP]	07
74. Design half adders and explain various implementations.(May'15) [IMP]	07
75. Explain design and functioning of half and full subtractors.(May'15) [IMP]	07
76. Design converter to convert decimal $8,4,-2,-1$ code to BCD.(May'15) [IMP]	07
77. Design converter to convert decimal $2,4,2,1$ code to $8,4,-2,-1$ code.(May'15) [IMP]	07
78. Design BCD to excess -3 code converter.(May'15) [IMP] / 79. Design a BCD to Excess-3 code converter using minimum number of NAND gates(Dec'14 NEW) [IMP]/ (Dec'11) [IMP]/ 80. Design and implement BCD to excess 3 code converter.(May'13) [IMP]	07 $07 /$ 08 07 07
81. Minimize the following logic function using K-maps and realize using NAND and NOR gates.(Dec'14 NEW) [IMP] $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma_{-} \mathrm{m}(1,3,5,8,9,11,15)+\mathrm{d}(2,13)$.	07
82. Minimize the logic function $F(A, B, C, D)=\pi M(1,2,3,8,9,10,11,14) \cdot d(7,15)$ Use Karnaugh map. Draw the logic circuit for simplified function using NOR gates only.(Dec'14 NEW) [IMP]	07
83. A combinational circuit has 3 inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and output F . F is true for following input combinations(Dec'14 NEW) [IMP]	07

CODE: 3130704
FACULTY NAME: SUNIL PATEL

A is False, B is True A is False, C is True A, B, C are False $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are True (i) Write the Truth table for F. Use the convention True $=1$ and False $=0$. (ii) Write the simplified expression for F in SOP form. (iii) Write the simplified expression for F in POS form. (iv) Draw the logic circuit using minimum number of 2-input NAND gates.	
84. Reduce using K-map(Dec'14) [IMP] $\Sigma \mathrm{m}(0,2,6,10,11,12,13)+\mathrm{d}(4,5,14,15)$	07
85. Obtain the set of prime implicants for $\Sigma \mathrm{m}(0,1,6,7,8,9,13,14,15)$ (Dec'14) [IMP]	07
86. Obtain the set of prime implicants for $\pi \mathrm{M}(2,3,8,12,13) . \mathrm{d}(10,14)$ (Dec'14) [IMP]	07
87. Design a combinational circuit that multiplies BCD inputs by 5 . Show that output can be obtained from the inputs without using any logic gates.(Dec'14) [IMP]	07
88. Using K-map find the Boolean function and its complement for the following(May'14) [IMP] $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(1,2,3,4,6,8,9,10,11,12,14)$	07
89. Derive Boolean function using Tabulation Method for the following (May'14) [IMP] $F(P, Q, R, S)=\sum(0,1,3,4,5,7,10,13,14,15)$	07
90. Attempt following:(May'14) [IMP] 1. Convert into Sum-of-Minterms: $\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{CA}$ 2. Convert into Product-of-Maxterms: $\mathrm{A}\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{C}^{\prime}\right)$	07
91. Define the following terms:(Nov'13) [IMP] (1) Literal (2) Minterm (3) Maxterm	03
92. Simplify the Boolean Function with Karnaugh map:(Nov'13) [IMP]/ $\begin{aligned} & \mathrm{F}(\mathrm{w}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,1,2,4,5,6,8,9,12,13,14) \text { and } \\ & \mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \end{aligned}$ 93. Simplify the Boolean function:(Dec'10) [IMP]/ (1) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,4,5,6,8,9,12,13,14)$ (2) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y})=\sum(0,1,3,4,5,7)$ 94. Simplify the Boolean function:(Dec'10) [IMP]/ (1) $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ (2) $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{BC}$ $d=A$ ' $C^{\prime} D+A C D+A B^{\prime} D^{\prime} \quad$ Where " d " indicate Don't care conditions. 95. Simplify the following Boolean function using K-Map.(May'12) [IMP] $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{D}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$	07
96. Simply the Boolean Function:(Nov'13) [IMP]/ $\mathrm{F}(\mathrm{w}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,3,7,11,15)$ and the Don't care conditions : $\mathrm{d}(\mathrm{w}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,2,5)$	07
97. Implement the functions $\mathrm{F}=\sum(1,3,7,11,15)$ with don't care conditions $\mathrm{d}=\sum(0,2,5)$ Discuss the effect of don't care conditions.(May'13) [IMP]/ 98. Simplify the Boolean Function using K-map(May'11) [IMP] $\mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,3,7,11,15) \text { with don't care conditions } \mathrm{d}(\mathrm{w}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,2,5)$	07 04
99. Simplify the Boolean Function by using tabulation method:(Nov'13) [IMP]/ (Dec'11) [IMP]/ $F=\sum(0,1,2,8,10,11,14,15)$	07

CODE: 3130704
FACULTY NAME: SUNIL PATEL

100. Simplify the following Boolean function using tabulation Method and draw logic diagram using NOR gates only(May'11) [IMP] $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,8,10,11,14,15)$	
101. With logic circuit describe the function of :(Nov'13) [IMP] (1) Full adder (2) Full subtractor Write the simplified Boolean functions with their outputs.	07
102. Define: combinational logic circuit(Nov'13) [IMP]	01
103. Obtain the simplified expression in sum of product for the following Boolean functions. (May'13) [IMP] (a) $\mathrm{F}=\sum(0,1,4,5,10,11,12,14)$ and (b) $\mathrm{F}=\sum(11,12,13,14,15)$.	07
104. Explain half and full adder in detail.(May'13) [IMP]	07
105. Show how a full-adder can be converted to a full-subtractor with the help of addition of one inverter circuit.(Dec'12) [IMP]	07
106. Obtain the simplified expressions in sum of products using K-map: x'z + w'xy' + $w\left(x^{\prime} y+x y^{\prime}\right)($ Dec' 12) [IMP]	07
107. Simplify the following Boolean function by means of the tabulation method:(Dec'12) [IMP]/ $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G})=\quad(20,28,38,39,52,60,102,103,127)$ 108. Determine the Prime Implicants of following Boolean Function using Tabulation Method.(May'12) [IMP] $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G})=\sum(20,28,38,39,52,60,102,103,127)$	07
109. Design a combinational circuit with the four input lines that represent a decimal digit in BCD and four output line that generate the 9's complement of the input digit.(Dec'12) [IMP]/ 110. Design a combinational circuit that generates the 9's complement of BCD digit.(Dec'9) [IMP]	07 07 05
111. Design the Combinational Circuits for Binary to Gray Code Conversion.(May'12) [IMP]	05
112. Explain Design Procedure for Combinational Circuit \& Difference between Combinational Circuit \& Sequential Circuit.(May'12) [IMP]	04
113. Express following Function in Product of Maxterms(May'12) [IMP] $F(x, y, z)=(x y+z)(y+x z)$	03
114. Explain briefly: SOP \& POS, minterm \& maxterm, canonical form(Dec'11) [IMP]	03
115. Simplify Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,4,5,6,8,9,12,13,14)$ using K-map and Implement it using (i) NAND gates only (ii) NOR gates only(Dec'11) [IMP]	08
116. Design a combinational circuit whose input is a four bit number and whose Output is the 2's complement of the input number.(Dec'11) [IMP]/ (May'11) [IMP]	08/ 07 07
117. Answer the following(May'11) [IMP] (i) Explain briefly: standard SOP and POS forms. (ii) What are Minterms and Maxterms?	04
118. Explain SOP and POS expression using suitable examples(March'10) [IMP]	07
119. Design 4 bit binary to BCD code converter(March'10) [IMP]	07
120. Obtain the simplified expressions in sum of products for the following Boolean functions:(Dec'9) [IMP] (i) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(0,1,4,5,16,17,21,25,29)$ (ii) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CE}$ ' $+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{B}^{\prime} \mathrm{DE}^{\prime}+\mathrm{BCD}^{\prime}$	07

SEMESTER: $3^{\text {RD }}$
NAME: DIGITAL FUNDAMENTAL
CODE: 3130704
FACULTY NAME: SUNIL PATEL

121. Design a combinational circuit that accepts a three bit binary number and generates an output binary number equal to the square of the input number.(Dec'9) [IMP]	07
3. LOGIC FUNCTION REALIZATION WITH MSI CIRCUITS	
122. Design a circuit for 2-bit magnitude comparator.(May'15 NEW) [IMP]	07
123. Design 3-bit even parity generator circuit.(May'15 NEW) [IMP]	07
124. Design 4×16 decoder using two 3×8 decoder.(May'15 NEW) [IMP]/ (Dec'12) [IMP]/ 125. Design a 4 -to- 16 decoder by using only $2-4$ decoder circuits.(May'14) [IMP]/ 126. Construct $4 * 16$ Decoder with help of $2 * 4$ Decoder.(May'12) [IMP]	07 05
127. Implement the given function using 8 X 1 Multiplexer.(May'15 NEW) [IMP] $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,5,8,9,11,14)$	07
128. Design a BCD adder.(May'15) [IMP]/ 129. Discuss 4 bit BCD adder in detail.(May'12) [IMP]	07 05
130. Explain 3 to 8 line decoder.(May'15) [IMP]/ 131. With logic circuit and truth table explain working of 3 to 8 line decoder.(Nov'13) [IMP] /(Dec'10) [IMP] 132. What is meant by decoder? Explain 3-to-8 line decoder with diagram and truth table (Dec'11) [IMP]/	07
133. Design a 8 to 1 multiplexer by using the four variable function given by (Dec'14 NEW) [IMP] $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,3,4,8,9,15)$	07
134. Implement $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,4,8,9,15)$ using multiplexer, choose A as input line.(Dec'14) [IMP]/ 135. What is multiplexer? Implement the following function with a multiplexer $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,4,8,9,15)\left(\text { May' }^{11}\right) \text { [IMP] }$	07
136. Design a combinational circuit that accepts the decimal number in BCD and display it on seven segment display.(Dec'14) [IMP]	07
137. Write a brief note on parity checker/generator.(May'14) [IMP]	07`
138. What is encoder? With logic circuit and truth table explain the working of Octal to binary Encoder.(Nov'13) [IMP]	07
139. What is Multiplexer? With logic circuit and function table explain the working of 4 to 1 multiplexer.(Nov'13) [IMP] / 140. Explain a 4 to 1 line multiplexer in detail.(May'13) [IMP] / 141. What is meant by multiplexer? Explain with diagram and truth table the Operation of 4-to-1 line multiplexer(Dec'11) [IMP]/ 142. With logic diagram and function table explain the operation of 4 to 1 line multiplexer.(Dec'10) [IMP]	07
143. With logic circuit explain the working of 4-bit magnitude comparator.(Nov'13) [IMP]/ 144. Explain 4 bit Magnitude Comparator.(May'12) [IMP]/ (Dec'9) [IMP]	07
145. Explain common cathode types seven segments displays. ${ }^{\text {a }}$ (May'12) [IMP]	03
146. Design a BCD to decimal decoder (May'11) [IMP]	07
147. A combinational circuit is defined by functions:(May'11) [IMP] $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6,7)$	

CODE: 3130704
FACULTY NAME: SUNIL PATEL

$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7)$ Implement the circuit with PLA having three inputs, four product term and two outputs	
148. Design a full adder circuit using decoder and multiplexer(March'10) [IMP]	07
149. Define: [1] Comparator [2] Encoder [3] Decoder [4] Multiplexer [5] De-multiplexer (March'10) [IMP]	05
4. FLIP-FLOPS, COUNTERS AND REGISTERS	
4 (C) FLIP-FLOPS	
150. Convert D flip flop into SR flip flop.(May'15 NEW) [IMP]	07
151. With the help of function table and circuit diagram explain the working of clocked SR flip flop.(May'15 NEW) [IMP]/ 152. 1. Convert J K Flip Flop to S R Flip flop.(Dec'14) [IMP]/ 2. Show the logical diagram of clocked S R Flip flop with AND and NOR gates. 153. With neat sketch explain the operation of clocked RS flip-flop(Dec'9) [IMP]	07 07 05
154. Draw the circuit diagrams and Truth table of all the Flip flops (SR, D, T and JK). (Dec'14 NEW) [IMP]	07
155. Implement D flip flop using JK flip flop.(Dec'14 NEW) [IMP]	07
156. Draw and explain Master - slave Flip flop.(Dec'14) [IMP]/	07
157. Write a note on Master-Slave Flip-Flop.(May'14) [IMP]/	
158. With logic diagram explain the function of master-slave flip-flop.(Nov'13) [IMP]/	05
159. Explain Master Slave Flip Flop through J K Flip Flop.(May'12) [IMP]	04
160. Explain the working of the Master Slave J K flip-flop(Dec'11) [IMP]/	06
161. Explain working of master-slave JK flip-flop with necessary logic diagram, state equation and state diagram(May'11) [IMP]	07
162. Write a brief note on edge-triggered SR and JK Flip-Flops.(May'14) [IMP]	07
163. Design a sequential circuit using JK Flip-Flops and two states Q0 and Q1 such that, 1. It moves to the next state for input 0 . (00 to 01,01 to $10, \ldots, 11$ to 00) 2. It moves to the previous state for input 1. (reverse from the above mentioned steps) (May'14) [IMP]	09
164. Define the following terms:(Nov'13) [IMP] (1) Flip Flop	01
165. Define: sequential logic circuit(Nov'13) [IMP]	01
166. Design a sequential with JK flip-flops to satisfy the following state equations:(Nov'13) $\begin{aligned} & {[\mathbf{I M P}] /(\mathbf{M a y} \mathbf{1 2})[\mathbf{I M P}]} \\ & \mathrm{A}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ACD}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime} \\ & \mathrm{B}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \\ & \mathrm{C}(\mathrm{t}+1)=\mathrm{B} \\ & \mathrm{D}(\mathrm{t}+1)=\mathrm{D} \end{aligned}$	07
167. Explain D type positive edge triggered flip flop.(May'13) [IMP]/ 168. Discuss D-type edge- triggered flip-flop in detail.(Dec'9) [IMP]	07
169. Explain JK Flipflop. What is disadvantage of it and how it can be eliminated?(Dec'12) [IMP]	07
170. Explain the procedure followed to analyse a clocked sequential circuit With suitable	10

CODE: 3130704
FACULTY NAME: SUNIL PATEL

example(Dec' 11) [IMP]	
171. Define: state table, state equation, state diagram, input \& output equations(Dec'11) [IMP]	04
172. Answer the following(May'11) [IMP] (i) Give comparison between combinational and Sequential circuits (ii) What is race-around condition in JK flip-flop?	04
173. Draw logic diagram, graphic symbol, and Characteristic table for clocked D flip-flop(May'11) [IMP]/ 174. Show the logic diagram of clocked D (Dec'9) [IMP]	03 02
175. With logic diagram and truth table explain the working JK Flipflop. Also obtain its characteristic equation. How JK flip-flop is refinement of RS flip-flop?(Dec'10) [IMP]	07
176. Define: [1] Flip-Flop(March'10) [IMP]	01
177. Draw and explain working of following flip-flops.(March'10) [IMP] [1] Clocked RS [2] JK	07
178. Convert SR flip-flop into JK flip-flop(March'10) [IMP]	07
179. Design sequential counter as shown in the state diagram using JK flip-flops. (March'10) [IMP] Clockwise direction to follow	07
4 (F) COUNTERS	
180. Design 4-bit ripple counter using negative edge triggered JK flip flop.(May'15 NEW) [IMP]/ 181. Write a note on Binary Ripple Counter.(May'14) [IMP]/ 182. With logic diagram explain the operation of 4 bit binary ripple counter. How up counter can be converted into down counter?(Nov'13) [IMP] /(Dec'10) [IMP]/ 183. Explain 4 bit binary ripple counter.(May'12) [IMP]/ 184. Explain working of 4-bit binary ripple counter(Dec'11) [IMP] 185. Give classification of counters and explain asynchronous 4-bit binary ripple counter(May'11) [IMP] 186. Explain the working of 4 bit asynchronous counter(March'10) [IMP]	07
187. Design a mod-12 Synchronous up counter using D-flip flop.(Dec'14 NEW) [IMP]	07
188. Design a synchronous BCD counter with JK Flip flop.(Dec'14) [IMP] / 189. Design a synchronous BCD counter with JK Flip flops.(May'13) [IMP]	07
190. Design and explain 4-bit Ripple UP/DOWN Counter using positive edge triggered Flip flop.(Dec'14) [IMP]	07
191. Design and implement a Modulo-6 Asynchronous counter using T Flip flop.(Dec'14) [IMP]	07
192. Design and Implement a Mod-10 asynchronous counter with T FF.(May'14) [IMP]	07
193. Define the following terms:(Nov'13) [IMP] (1) Counter	01

CODE: 3130704
FACULTY NAME: SUNIL PATEL

194. Design a counter with the following binary sequence:(Dec'12) [IMP]/ (Dec'9) [IMP] $0,1,3,7,6,4$ and repeat. Use T flipflop.	07
195. Explain BCD Ripple counter and draw its logic diagram and timing diagram.(Dec'12) [IMP]/ 196. Draw the state diagram of BCD ripple counter, develop it's logic diagram, and explain it's operation.(Dec'9) [IMP]	07
197. Explain 4-bit up-down binary synchronous counter.(May'12) [IMP]	07
198. Design counter with the following binary sequence:(Dec'10) [IMP]/ (Dec'9) [IMP] $0,4,2,1,6$ and repeat. Use JK flip-flops	07
4 (G) REGISTERS	
199. With neat sketch design 4-bit bidirectional shift register.(May'15 NEW) [IMP]	07
200. Write a short note on four bit Universal Shift Register.(Dec'14 NEW) [IMP]/ 201. Explain in detail bidirectional shit register with parallel load.(Dec'12) [IMP]/ 202. Draw and explain the block diagram of 4-bit bidirectional shit register with Parallel load. (Dec'11) [IMP]/ 203. With necessary sketch explain Bidirectional Shift Register with parallel load.(Dec'9) [IMP]	07
204. Design a circuit for 4-bits parallel register with load with D Flip-Flops. Load input decides whether to load new input or to apply no change conditions.(May'14) [IMP]	07
205. Define the following terms:(Nov'13) [IMP] (1) Register	01
206. What is the difference between serial and parallel transfer? What type of registers are used in each case.(May'13) [IMP]	07
207. Explain Johnson Counters.(May'12) [IMP]/ 208. Construct a Johnson counter with Ten timing signals.(Dec'9) [IMP]	07
209. Define the different mode of operation of registers \& explain any two in details. (May'12) [IMP]	07
210. How many flip flops are required to build a shift register to store following numbers?(May'12) [IMP] i) Decimal 28 ii) Binary 6 bits iii) Octal 17 iv) Hexadecimals A	04
211. What is the function of shift register? With the help of simple diagram explain its working. With block diagram and timing diagram explain the serial transfer of information from register A to register B.(Dec'10) [IMP]	07
5. INTRODUCTION TO STATE MACHINES	
212. Define followings with respect to finite state machine.(May'15 NEW) [IMP] (i) State table (ii) Melay machine (iii) Moore machine	03
213. Discuss the General State machine Architecture.(Dec'14 NEW) [IMP]	07

CODE: 3130704
FACULTY NAME: SUNIL PATEL

6. SYNCHRONOUS STATE MACHINE DESIGN	
7. ASYNCHRONOUS STATE MACHINES	
214. Explain the Fundamental Mode Model of Asynchronous State Machine with suitable example.(Dec'14 NEW) [IMP]	07
8. LOGIC FAMILIES	
215. Select the most appropriate option(Dec'14 NEW) [IMP] (i) Which TTL logic gate is used for wired ANDing (A) Open collector output (B) Totem Pole (C) Tri state output (D) ECL gates	01
216. Define the followings.(Dec'14 NEW) [IMP] (i) Totem Pole output	01
217. Compare the following in every aspect.(Dec'14 NEW) [IMP] (i) TTL and CMOS	3.5
9. PROGRAMMABLE LOGIC DEVICES	
218. Compare ROM, PLA and PAL.(May'15 NEW) [IMP]	07
219. Explain ROM and it's types.(May'15) [IMP]/ 220. Write short note on: Read Only Memory (ROM)(May'11) [IMP]/ 221. Write short note on EEPROM, EPROM and PROM(March'10) [IMP]	07
222. Explain PLA and it's application.(May'15) [IMP] / 223. Write short note on Programmable Logic Arrays.(Dec'14 NEW) [IMP]/ 224. Explain in brief: Programmable Logic Array(May'14) [IMP]/ 225. Explain PLA in detail.(May'13) [IMP] / 226. Explain PLA with necessary diagrams.(Dec'12) [IMP]	07
227. Define the followings.(Dec'14 NEW) [IMP] (i) EPROM	01
228. Compare the following in every aspect.(Dec'14 NEW) [IMP] (i) RAM and ROM	3.5
229. A combinational circuit is defined by functions:(May'11) [IMP] $\begin{aligned} & \mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6,7) \\ & \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7) \end{aligned}$ Implement the circuit with PLA having three inputs, four product term and two outputs	07
230. Define: [1] PLA(March'10) [IMP]	01
231. Explain memory unit(March'10) [IMP]	07

