AMIRAJ COLLEGE OF ENGINEERING \& TECHNOLOGY

LABORATORY MANUAL

ELECTRICAL CIRCUIT ANALYSIS
 SUBJECT CODE: 3130906

ELECTRICAL ENGINEERING DEPARTMENT B.E. $3^{\text {RD }}$ SEMESTER

NAME:

ENROLLMENT NO: \qquad

BATCH NO: \qquad

YEAR: \qquad

Amiraj College of Engineering and Technology, Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.

AMIRAJ COLLEGE OF ENGINEERING \& TECHNOLOGY

Amiraj College of Engineering and Technology,

 Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad.
CERTIFICATE

This is to certify that Mr. / Ms. \qquad
Of class \qquad Enrolment No \qquad has

Satisfactorily completed the course in \qquad as by the Gujarat Technological University for__Year (B.E.) semester__ of Electrical Engineering in the Academic year \qquad .

Date of Submission:-

Faculty Name and Signature
(Subject Teacher)

Head of Department
(Electrical)

COLLEGE OF ENGINEERING \& TECHNOLOGY

ELECTRICAL ENGINEERING DEPARTMENT

B.E. 3^{RD} SEMESTER
 SUBJECT: ELECTRICAL CIRCUIT ANALYSIS
 SUBJECT CODE: 3130906

List of Experiments

Sr. No.	Title	Date of Performance	Date of submission	Sign	Remarks
1	TO PERFORM THE OHMS LAW EXPERIMENT AND VERIFY THE VALUE OF RESISTOR.				
2	TO PERFORM SERIES \& PARALLEL CONNECTION OF RESISTOR AND CAPACITOR.				
3	TO MEASURE AND CALCULATE CURRENTS AND VOLTAGES FOR A GIVEN RESISTIVE CIRCUIT AND VERIFY KCL AND KVL.				
4	TO PERFORM STAR TO DELTA CONNECTION OF RESISTOR.				
5	VERIFICATION OF SUPER POSITION THEOREM				
6	VERIFICATION OF THEVENIN'S THEOREM				
7	VERIFICATION OF NORTON'S THEOREM				
8	VERIFICATION OF MAXIMUM POWER TRANSFER THEOREM				
9	VERIFICATION OF RECIPROCITY THEOREM				
10	VERIFICATION OF TWO PORT PARAMETERS FOR DIFFERENT NETWORK				

AIM: To perform the Ohms Law experiment and verify the value of Resistor.

APPARATUS :

1) Experimental training kit
2) Connecting wires
3) DC Voltmeter $(0-20 \mathrm{Vdc})$
4) DC Ammeter ($0-50 \mathrm{~mA}$)

THEORY :

Ohm's law is represented by following equation

$$
\mathbf{R}=\mathbf{V} / \mathbf{I}
$$

Here, " R " is resistance (Ohm), " V " is voltage across resistor (Volt) and " I " is current flowing through the resistor (Amp.)

PROCEDURE :

1) Connect the $(0-50 \mathrm{~mA})$ milliammeter \& $(0-20 \mathrm{~V})$ voltmeter as shown in figure.
2) Keep voltage adjust potentiometer to its minimum position.
3) Switch on the trainer.
4) Connect any of one resistor " R " ($0.5 \mathrm{~K} \Omega / 1 \mathrm{~K} \Omega / 2.2 \mathrm{~K} \Omega$), which is provided on the kit itself.
5) Now, take the different readings of Voltage "V" and current "l" by varying DC variable supply from 2 Vdc on wards insteps of 3 Vdc .
6) Repeat above step 5 for different value of resistor.
7) Calculate resistor $\mathrm{R}=\mathrm{V} / \mathrm{I}$ and compare it with its theoretical value.
8) Also plot the graph of Current "l" v/s Voltage " V ". It is linear.
9) Calculate the slop of the line. It give resistor " R " value in ohm.

OBSERVATION TABLE

$\mathrm{R}=$ $\mathrm{K} \Omega$

Voltage "V"	Current "I"	R = V / I
2 Vdc		
5 Vdc		
8 Vdc		
11 Vdc		
14 Vdc		
17 Vdc		

CONCLUSION :

AIM: To perform the series and parallel connection of resistor and capacitor.
A) SERIES AND PARALLEL CONNECTION OF RESISTOR

APPARATUS :

1) Experimental training kit
2) Connecting wires
3) DC MilliAmmeter ($0-50 \mathrm{mAdc}$)
4) DC Voltmeter ($0-15 \mathrm{Vdc}$)

PROCEDURE :

Part - 1 : Only one Resistor

a. Connect the circuit as shown in Figure. 1.
b. Select any one resistor.
c. Switch on the trainer.
d. Note the readings of DC voltmeter (Vdc) and DC ammeter (Idc).
e. Calculate Resistance $\boldsymbol{R}=\mathrm{Vdc} / \mathrm{ldc}$.

OBSERVATION TABLE-1 :

DC voltage (Vdc)	DC Current (Idc)	Calculated "R" (K Ω)	Actual "R" (K Ω)

Part - 2 : Two Resistors are in Parallel

f. Connect the circuit as shown in Figure. 2.
g. Switch on the trainer.
h. Note the readings of DC voltmeter (Vdc) and DC ammeter (Idc).
i. Calculate equivalent Resistance $R p=V d c / I d c$.
j. Equivalent Parallel Resistance $\boldsymbol{R p}=\mathbf{R 1}^{*} \mathbf{R 2} \mathbf{~ / ~ (R 1 + R 2)}$.

Part - 3 : Two Resistors are in Series

k. Connect the circuit as shown in Figure. 3.
I. Switch on the trainer.
m. Note the readings of DC voltmeter (Vdc) and DC ammeter (Idc).
n. Calculate equivalent Resistance $\boldsymbol{R s}=\mathrm{Vdc} / \mathrm{Idc}$.
o. Equivalent Series Resistance $\boldsymbol{R} \boldsymbol{s}=\boldsymbol{R 1} \mathbf{+ R 2}$.

Calculation :

> From Series and parallel connected Resistors (Refer Part - 2 and Part - 3) Voltage and current readings, calculate equivalent parallel resistance Rp and equivalent series Resistance Rs.
$>$ Solve these two equations of $\mathbf{R p} \& \mathbf{R s}$ for calculating values of $\mathbf{R 1}$ and $\mathbf{R 2}$.
> Compare these calculated values of Resistance with its actual value.

CONCLUSION :

B) SERIES AND PARALLEL CONNECTION OF CAPACITOR

APPARATUS :

1) Experimental training kit
2)AC MilliAmmeter (0-50mAdc)
2) Connecting wires
3) AC Voltmeter ($0-15 \mathrm{Vac}$)

PROCEDURE :

Part - 1 : Only one Capacitor

p. Connect the circuit as shown in Figure. 1.
q. Select capacitor either $2.2 \mu \mathrm{~F}$ or $1 \mu \mathrm{~F}$ or $0.47 \mu \mathrm{~F}$.
r. Switch on the trainer.
s. Note the readings of AC voltmeter (Vac) and AC ammeter (lac).
t. Calculate Capacitance Impedance $\boldsymbol{X c}=\mathbf{V a c / l a c}$.
u. Calculate capacitance value from the $X c=\mathbf{1 / (2 \Pi f C)}$. Here frequency $f=\mathbf{5 0 H z}$.

Hence, C = [(lac/Vac)* 1/(2Пf)]

OBSERVATION TABLE-1 :

AC voltage (Vac)	AC Current (lac)	Calculated "C" ($\mu \mathrm{F}$)	Actual "C" ($\mu \mathrm{F}$)

Part - 2 : Two Capacitors are in Parallel

v. Connect the circuit as shown in Figure. 2.
w. Switch on the trainer.
x. Note the readings of AC voltmeter (Vac) and AC ammeter (lac).
y. Calculate equivalent Capacitance Impedance $\boldsymbol{X c p}=$ Vac/lac.
z. Calculate capacitance value from the $X c p=1 /(2 \Pi f C p)$. Frequency $f=50 \mathrm{~Hz}$.
aa. Equivalent Parallel Capacitance $\mathbf{C p}=\mathbf{C 1 + C 2}$.

Part-3: Two Capacitors are in Series

bb. Connect the circuit as shown in Figure. 3.
cc. Switch on the trainer.
dd. Note the readings of AC voltmeter (Vac) and AC ammeter (lac).
ee. Calculate equivalent Capacitance Impedance Xcs = Vac/lac.
ff . Calculate capacitance value from the $\mathrm{Xcp}=1 /(2 \Pi \mathrm{fCs})$. Frequency $\mathrm{f}=50 \mathrm{~Hz}$.
gg. Equivalent Series Capacitance $\boldsymbol{C s}=\boldsymbol{C 1 *} \mathbf{C 2} /(\boldsymbol{C 1 + C 2})$.

Calculation :

> From Series and parallel connected capacitors (Refer Part - 2 and Part -3) Voltage and current readings, calculate equivalent parallel capacitance $\mathbf{C p}$ and equivalent series Capacitance Cs.
$>$ Solve these two equations of $\mathbf{C p} \& \mathbf{C s}$ for calculating values of $\mathbf{C 1}$ and $\mathbf{C 2}$.
$>$ Compare these calculated values of capacitance with its actual value.

CONCLUSION :

AIM: To measure and calculate currents and voltages for a given resistive circuit and verify KCL and KVL.

APPARATUS :

1) Experimental training kit
2) Connecting wires
3) Digital multimeter

THEORY :

Kirchoff's Voltage Law (KVL) : For any closed path in a network, the algebraic sum of voltages is zero.

Kirchoff's Current Law (KCL) : The algebraic sum of currents at a node is zero.

PROCEDURE :

1. Make the Connect for any of the above network.
2. Keep voltage adjust potentiometer to its minimum position.
3. Switch on the trainer and adjust the voltage to any value (i.e. 10 Vdc).
4. Measure the voltage drop across each resistor and current supplied from voltage source.
5. Calculate current flowing through each resistor.
6. Solve the same network, theoretical and verify the results with measured values.
7. Verify the KVL for any closed path and KCL for any node of the network.

Observation Table :

Type of network
V = \qquad Vdc

Total current, I (mA)	Measured voltage across resistors	Theoritical voltage across resistors

Readings for Figure. 1

	Measured voltage across resistors

Readings for Figure. 2

	Measured voltage across resistors

CONCLUSION :

AIM: To perform star to delta connection of Resistors.

APPARATUS :

1) Experimental training kit
2) Connecting wires
3) Digital multimeters (Vac \& lac measurement)

THEORY :

Star Connection : Refer figure 1 for the same.
For Star connection line current and phase current are same.
For Star connection line voltages are equal to 3 times phase voltage.
Delta Connection : Refer figure 2 for the same.
For Delta connection line currents are equal to 3 times phase current.
For Delta connection line voltage and phase voltage are same.

PROCEDURE :

1. Connect 3 phase, 4 wire, $415 \mathrm{Vac}, 50 \mathrm{~Hz}$ supply to trainer.
2. Make the Star connection as per figure 1 .
3. Switch on 3 phase supply.
4. Measure the line voltages and phase voltages. Verify the relation between same.
5. Measure the line current, it same as of phase current.
6. Make the Delta connection as per figure 2.
7. Measure the line voltages and phase voltages. Verify the relation between same, both are same.
8. Measure the line current and calculate phase current from phase voltage $(\mathrm{Vph} / \mathrm{R})$. Verify the relation between line current and phase current.

Observation Table :

Type of network : Star connection

Line Voltage	Phase Voltage	Line current $=$ Phase current

Type of network : Delta connection

Line Current	Phase Current $=$ Vph/1K	Line Voltage $=$ Phase Voltage

CONCLUSION :

AIM: Verification of Superposition Theorem.

APPARATUS :

3) Experimental training kit
4) Connecting wires
5) Digital multimeters

THEORY :

The superposition theorem states that the response in any element of a linear bilateral network containing two or more sources is the algebraic sum of the responses obtained by each source acting separately at a time and with all the other sources set equal to zero, leaving behind their internal resistance in the network.

According to this theorem, if there are a number of e.m.fs acting simultaneously in any linear bilateral network, each e.m.f acts independently of the others i.e as if the other e.m.fs doesn't exist. The value of current in any element of the netwrok is the algebraic sum of the currents due to each e.m.f. Similarly voltage across any element/branch is the algebraic sum of the voltages which each e.m.f would have produced while acting separately at a time. In other words, current through or voltage across any conductor of the network is obtained by superimposing the currents and voltages due to each e.m.f. in the network .lt is important to note that this theorem is applicable only to linear networks.

The superposition theorem is applied to determine currents and voltages which are linearly related to the sources acting on the network. Power can not be determined by superposition principle since the relationship between power and current or voltage is quadratic.

In Fig(a) I_{1}, I_{2} and I_{3} represent values of currents due to simultaneous action of the two sources of e.m.fs in the network. In fig(b) I_{1} ', I_{2} and I^{\prime} represent values of currents due to source of e.m.f E_{1} alone. \ln fig (c) $I_{1} ", I_{2} "$ and $I "$
represent values of currents due to source of e.m.f E2 alone. By superimposing the current values of fig (b) and fig (c) the actual values of currents due to both the sources can be obtained as under:

Obviously: $1_{1}=l_{1}{ }^{\prime}+l_{1 "}$ (algebraic)
$\mathrm{I}_{2}=\mathrm{I}_{2}{ }^{\prime \prime}+\mathrm{I}_{2}$ (algebraic)
$I=1 '+I "$ (algebraic)

PROCEDURE :

1. Make the Connect for any of the above network. Use two DC power supplies.
2. Keep voltage adjust potentiometer to its minimum position.
3. Switch on the trainer and adjust the voltages to any value (i.e. 10 Vdc).
4. Measure the voltage drop across each resistor and current supplied from voltage source.
5. Calculate current flowing through each resistor.
6. Solve the same network, theoretical and verify the results with measured values.
7. Now, connect only one voltage source at a time and repeat the steps $4,5 \& 6$.
8. Repeat the same for connecting only second voltage source at a time and repeat the steps 4,5 \& 6.
9. Algebraic sum of readings taken by steps $7 \& 8$ will be same as of reading taken in step 4 by connecting two sources simultaneously.

CALCULATION :

AIM: Verification of Thevenin's Theorem.

APPARATUS :

1. Experimental training kit
2. Connecting wires
3. DC Voltmeter (0-20Vdc)
4. Ohm-meter

THEORY :

Thevenin's theorem is useful when voltage across only single resistance / impedance or current flowing through only single resistance / impedance is to be calculated or to be measured.

For a linear network voltage across any resistance / impedance or current flowing through that resistance / impedance is equal to the voltage across same resistance / impedance or current flowing through that resistance / impedance when it is connected to Thevenin's equivalent voltage source.

Any linear network can be represented by actual voltage source, i.e. voltage source $\mathbf{V}_{\text {тн }}$ and series connected resistance $\mathbf{R}_{\text {тн }}$ / impedance $\mathbf{Z}_{\text {тн }}$.

For solving any network by Thevenin's theorem follow the steps as given below

1) Measure or calculate the open circuit voltage between two given points " $A \& B$ ", where the load is to be connected. This voltage is known as open circuit Thevenin's equivalent voltage V_{tH} or Voc .
2) Measure or calculate the equivalent impedance between two given points "A \& B", by making source is zero. This impedance is known as Thevenin's equivalent impedance $\mathbf{R}_{\text {tн }}$ or $\mathbf{Z}_{\text {Tн }}$.

Here, we have used "Bridge T" network of having all resistors of $3.3 \mathrm{~K} \Omega$ each and load resistance RL of $10 \mathrm{~K} \Omega$.
$R_{\text {TH }}=(R 1 / / R 3+R 2) / / R 4=(3.3 \mathrm{~K} / / 3.3 \mathrm{~K}+3.3 \mathrm{~K}) / / 3.3 \mathrm{~K}=4.95 \mathrm{k} / / 3.3 \mathrm{~K}=1.98 \mathrm{~K} \Omega$

PROCEDURE :

1. Make the connection as shown in Figure 1.
2. Switch on the trainer.
3. Set variable DC voltage Vs to 10 Vdc and Measure open circuit Thevenin's equivalent voltage between points "A \& B", it known as $V_{T H}$ or Voc.
4. Now connect the Load resistor RL of $10 \mathrm{~K} \Omega$ between points "A \& B" and measure the load voltage \mathbf{V}_{L}. Calculate the load current.
5. For measurement of Thevenin's equivalent impedance $\mathbf{R}_{\text {тн }}$ or $\mathbf{Z}_{\text {тн }}$ make the connection as shown in Figure 2.
6. Measure the resistance between points "A \& B" by Ohm-meter.
7. Calculate the Theoretical value of Thevenin's equivalent impedance Rth or $\mathbf{Z}_{\text {тн. }}$. Here it is $1.98 \mathrm{~K} \Omega$.
8. To verify the load voltage V_{L} by Thevenin's theorem. Set the variable potentiometer ohmic value is equal to $\mathbf{R}_{\text {TH }}$ and voltage source $V_{\text {s }}$ to is equal $V_{\text {tн }}$ or Voc. Connect the circuit as shown in Figure3.
9. Measure the load voltage V_{L} and compare with measured voltage as per step no. 3. You will get same readings.
10. Repeat the all above steps for different value of $\mathbf{V s}$ i.e. 15 Vdc or 5 Vdc or so and verify the load voltage by Thevenin's theorem.
11. Also solve the given network theoretical and match the theoretical result with the practical or measured result.

OBSERVATION TABLE :

Measured Rth $=\ldots \quad \mathrm{K} \Omega, \mathrm{VS}=\ldots \quad \mathrm{Vdc}$

VS (Vdc)	Open circuit voltage "Vth",	Load voltage "VL"	Load voltage by Thevenin's Network "VL"
10 Vdc			
15 Vdc			

THEORITICAL TABLE :

Rth $=1.98 \mathrm{~K} \Omega$,

VS (Vdc)	Open circuit voltage "Vth"	Load voltage "VL"	Load voltage by Thevenin's Network "VL"

CALCULATION

AIM: Verification of Norton's Theorem.

APPARATUS :

1. Experimental training kit
2. Connecting wires
3. DC Voltmeter (0-20Vdc)
4. Ohm-meter
5. DC milliammeter (0-20mAdc)

THEORY :

Norton's theorem is useful when voltage across only single resistance / impedance or current flowing through only single resistance / impedance is to be calculated or to be measured.

For a linear network voltage across any resistance / impedance or current flowing through that resistance / impedance is equal to the voltage across same resistance / impedance or current flowing through that resistance / impedance when it is connected to Norton's equivalent current source.

Any linear network can be represented by actual current source, i.e. current source Isc and parallel connected resistance $\mathbf{R}_{\mathbf{T H}} /$ impedance $\mathbf{Z}_{\mathbf{T H}}$.

For solving any network by Norton's theorem follow the steps as given below

1. Measure or calculate the short circuit current between two given points " A \& B", where the load is to be connected. This current is known as short circuit Norton's equivalent current Isc.
2. Measure or calculate the equivalent impedance between two given points " A \& B", by making source is zero. This impedance is known as Thevenin's equivalent impedance $\mathbf{R}_{\text {tн }}$ or $\mathbf{Z}_{\text {Tн }}$.

Here, we have used "Bridge T" network of having all resistors of $3.3 \mathrm{~K} \Omega$ each and load resistance RL of $4.7 \mathrm{~K} \Omega$.
$R_{\text {TH }}=(R 1 / / R 3+R 2) / / R 4=(3.3 \mathrm{~K} / / 3.3 \mathrm{~K}+3.3 \mathrm{~K}) / / 3.3 \mathrm{~K}=4.95 \mathrm{~K} / / 3.3 \mathrm{~K}=1.98 \mathrm{~K} \Omega$

PROCEDURE :

1. Make the connection as shown in Figure 1.
2. Switch on the trainer.
3. Set variable DC voltage to 10 Vdc and Measure short circuit Norton's equivalent current flowing through points " $\mathrm{A} \& \mathrm{~B}$ ", it known as Isc.
4. Now connect the Load resistor RL of $4.7 \mathrm{~K} \Omega$ between points "A \& B" and measure the load current IL. Calculate the load current.
5. For measurement of Norton's equivalent impedance $\mathbf{R t h}_{\text {th }}$ or $\mathbf{Z}_{\text {тн }}$ make the connection as shown in Figure 2.
6. Measure the resistance between points "A \& B" by Ohm-meter.
7. Calculate the Theoretical value of Thevenin's equivalent impedance $\mathbf{R t н}_{\boldsymbol{t}}$ or $\mathbf{Z}_{\mathbf{T H}}$. Here it is $1.98 \mathrm{~K} \Omega$.
8. To verify the load current IL by Norton's theorem. Set the variable potentiometer ohmic value is equal to $\mathbf{R}_{\boldsymbol{T}}$ and current source \mathbf{I} to be equal Isc. Connect the circuit as shown in Figure 3.
9. Measure the load current IL and compare with measured voltage as per step no. 3. You will get same readings.
10. Repeat the all above steps for different value of $\mathbf{V}_{\text {s }}$ i.e. 15 Vdc or 5 Vdc or so and verify the load current by Norton's theorem.
11. Also solve the given network theoretical and match the theoretical result with the practical or measured result.

OBSERVATION TABLE :

Measured Rth = $K \Omega, V S=$ \qquad Vdc

VS (Vdc)	Short circuit current "Isc"	Load current "IL"	Load current by Norton's Network "IL"

THEORITICAL TABLE

Rth $=1.98 \mathrm{~K} \Omega$,

VS (Vdc)	Short circuit current "Isc"	Load current "IL"	Load current by Norton's Network "IL"

CALCULATION :

CONCLUSION :

AIM: Verification of Maximum Power Transfer Theorem.

APPARATUS :

1. Experimental training kit
2. Connecting wires
3. DC Voltmeter ($0-20 \mathrm{Vdc}$)
4. DC milli-ammeter ($0-20 \mathrm{mAdc}$)

THEORY :

It is very important to determine the value of load impedance which will allow the maximum power to be transferred to the load from generating source. This maximum power transfer theorem is particularly useful for analyzing communication networks where the goal is transfer of maximum power from source to load and not the efficiency.

Any network can be replaced by single voltage source in series with a resistance/impedance. i.e. any linear network can be represented by Thevenin's equivalent circuit (voltage source $\mathbf{V}_{\mathbf{T H}}$ and series connected resistance $\mathbf{R}_{\boldsymbol{T H}}$ / impedance $\mathbf{Z}_{\mathbf{T H}}$).

As shown in Figure 1, Vs is the voltage source or Thevenin's equivalent voltage and Rs is the internal resistance of the source or the Thevenin's equivalent resistance. Now calculate the load resistance $\mathbf{R L}$ in terms of $\mathbf{R s}$, so that power delivered to the load resistance $\mathbf{R L}_{\mathrm{L}}$ is maximum.

The load current $\mathbf{I L}_{\mathbf{L}}=\mathrm{V}_{\mathbf{s}} /(\mathbf{R s}+\mathbf{R} \mathbf{L})$
Power transferred $\mathbf{P}=\mathbf{I L}^{\mathbf{2}} \mathbf{R L}_{\mathrm{L}}=\mathbf{V s}^{\mathbf{2}} \mathbf{R L}_{\mathrm{L}} /(\mathbf{R s}+\mathbf{R L})^{\mathbf{2}}$
For maximum power to be transfer, the necessary condition is $\mathbf{d P /} / \mathbf{d R L}=\mathbf{0}$
$d P / d R_{L}=V_{s}{ }^{2} /\left(R_{s}+R_{L}\right)^{4}\left\{\left(R_{s}+R_{L}\right)^{2}-R_{L} 2\left(R_{s}+R_{L}\right)\right\}=0$
$\therefore \mathrm{R}_{\mathrm{L}}=\mathrm{Rs}$
\therefore Pmax. $=\mathrm{Vs}^{2} / 4 \mathrm{Rs}$

PROCEDURE :

1. Make the connection as shown in Figure 1.
2. Switch on the trainer.
3. Connect the series resistance Rs to $0.5 \mathrm{~K} \Omega$.
4. Now select the load resistance $\mathbf{R L}$ from $0.5 \mathrm{~K} \Omega / 1 \mathrm{~K} \Omega / 2.2 \mathrm{~K} \Omega / 3.3 \mathrm{~K} \Omega$ by proper connections. Every time measure $\mathbf{V}_{\mathbf{L}}$ and \mathbf{I}. Calculate power " $\mathbf{P}=\mathbf{V}_{\mathbf{L}}$ IL" consumed by the load resistance RL.
5. See that maximum power transfer takes place when $\mathbf{R L}=\mathbf{R s}$.
6. Repeat the all above steps for different value of value of series resistance Rs.
7. Also calculate the theoretical maximum power transfer "Pmax. = Vs ${ }^{2} / 4 R s$ " and compare with the practical or measured result.

OBSERVATION TABLE :

Series Resistance Rs = \qquad $\mathrm{K} \Omega, \mathrm{Vs}=15 \mathrm{Vdc}$

Load Resistance "RL"	Load Voltage " V_{L} "	Load Current "IL"	Power transferred to Load "P = $\mathrm{V}_{\mathrm{L}} \mathrm{IL}_{\mathrm{L}}$ "

Theoretical maximum power Pmax. = Vs ${ }^{2} / 4 \mathrm{Rs}=$ \qquad mW

Measured maximum power from the observation table Pmax. = \qquad mW

CALCULATION

CONCLUSION

AIM: Verification of Reciprocity Theorem.

APPARATUS :

1. Experimental training kit
2. Connecting wires
3. Digital Multimeter (DC voltmeter \& DC mAmmeter)

THEORY :

The Reciprocity theorem states that in a linear, bilateral, single source network the ratio of excitation to response is constant when positions of excitation and response are interchanged.

In other words "If source \mathbf{V} is located at one point in a network produces current \mathbf{I} at a second point in the network, the source \mathbf{V} acting at the second point of the network will produce the current I at the first point of the network.

Here, you can make " T " network, Bridge " T " network or ladder network.

PROCEDURE :

1. Make the connection as shown in Figure 1.
2. Switch on the trainer.
3. Set variable DC voltage \mathbf{V} to 20 Vdc and measure the load current IL.
4. Now interchange the voltage source and connected branch and set the DC voltage \mathbf{V} to 20 Vdc . Refer Figure 2. Measure the equivalent branch current IJ.
5. Verify that above measured currents IL and IJ both are same, i.e. IL = IJ.
6. Repeat the all above steps for different types of network
7. Also solve the given network theoretical and match the theoretical result with the practical or measured result.

OBSERVATION TABLE :

VS (Vdc)	Load current "IL"	Branch current "IJ"	Theoritical current "Ith"

CALCULATION

CONCLUSION :

AIM: Verification of Two Port Parameters for different Network.

APPARATUS :

1. Experimental training kit
2. Connecting wires
3. DC Voltmeter (0-20Vdc)
4. DC Ammeter (0-20mA)

THEORY :

Open circuit impedance parameters (Z - Parameters) :
The two port network can be characterized by the following Z - parameters equations.
$\mathbf{V}_{\mathbf{1}}=\mathbf{Z}_{11} \mathbf{I}_{\mathbf{1}}+\mathbf{Z}_{\mathbf{1 2}} \mathbf{I}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{Z}_{\mathbf{2 1}} \mathbf{I}_{\mathbf{1}}+\mathbf{Z}_{\mathbf{2}} \mathbf{I}_{\mathbf{2}}$

For calculation of \mathbf{Z} - parameters, the condition $\mathbf{I}_{\mathbf{1}}=\mathbf{0}$ or $\mathbf{I}_{\mathbf{2}}=\mathbf{0}$ is accomplished by open circuiting either port 1 or port 2 . Thus,
$Z_{11}=V_{1} / I_{1}, I_{2}=0$
$Z_{21}=V_{2} / I_{1}, I_{2}=0$
$Z_{12}=V_{1} / I_{2}, I_{1}=0$
$Z_{22}=V_{2} / I_{2}, I_{1}=0$

Short circuit admittance parameters (Y - Parameters)

The two port network can be characterized by the following Y - parameters equations.
$\mathbf{I}_{\mathbf{1}}=\mathbf{Y}_{11} \mathbf{V}_{\mathbf{1}}+\mathbf{Y}_{12} \mathbf{V}_{\mathbf{2}}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{Y}_{\mathbf{2 1}} \mathbf{V}_{\mathbf{1}}+\mathbf{Y}_{22} \mathbf{V}_{\mathbf{2}}$

For calculation of Y - parameters, the condition $\mathbf{V}_{\mathbf{1}}=\mathbf{0}$ or $\mathbf{V}_{\mathbf{2}}=\mathbf{0}$ is accomplished by short circuiting either port 1 or port 2. Thus,
$\mathbf{Y}_{11}=\mathbf{I}_{1} / \mathrm{V}_{1}, \mathrm{~V}_{\mathbf{2}}=\mathbf{0}$

$$
Y_{21}=I_{2} / V_{1}, V_{2}=0
$$

$\mathrm{Y}_{12}=\mathrm{I}_{1} / \mathrm{V}_{2}, \mathrm{~V}_{1}=0 \quad \mathrm{Y}_{22}=\mathrm{I}_{2} / \mathrm{V}_{2}, \mathrm{~V}_{1}=0$

Hybrid parameters (H- Parameters)

The two port network can be characterized by the following H - parameters equations.
$\mathbf{V}_{\mathbf{1}}=\mathbf{H}_{11} \mathbf{l}_{\mathbf{1}}+\mathbf{H}_{12} \mathbf{V}_{\mathbf{2}}$
$\mathrm{I}_{2}=\mathrm{H}_{21} \mathrm{I}_{1}+\mathrm{H}_{22} \mathrm{~V}_{\mathbf{2}}$

For calculation of H - parameters, the condition $\mathbf{I}_{\mathbf{1}}=\mathbf{0}$ or $\mathbf{V}_{\mathbf{2}} \mathbf{= 0}$ is accomplished by open circuiting port 1 or short circuiting port 2 . Thus,
$H_{11}=V_{1} / I_{1}, V_{2}=0$
$H_{21}=I_{2} / I_{1}, V_{2}=0$
$H_{12}=V_{1} / V_{2}, I_{1}=0$
$\mathrm{H}_{22}=\mathrm{I}_{\mathbf{2}} / \mathrm{V}_{\mathbf{2}}, \mathrm{I}_{\mathbf{1}}=\mathbf{0}$

Refer the general circuit diagram as shown in Figure 1.

We can make the different networks like "T" network, " \quad " network, Bridge "T" network, ladder network etc. from the given circuit diagram.

PROCEDURE :

1. Make the connection as shown per required network, like " T " network or " π " network or Bridge "T" network or ladder network etc. from the given circuit diagram as shown in Figure 1.
2. Switch on the trainer.
3. Set variable DC voltages \mathbf{V}_{1} to 10 Vdc and $\mathbf{V}_{\mathbf{2}}$ to 5 Vdc .
4. Depending upon which parameters we would like to calculate, measure the appropriate readings as per required as per given theory.
5. Repeat the all above steps for different values of $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$.
6. Also repeat the all above steps for different parameters calculation and measurements.
7. Also solve the given network theoretical and match the theoretical result with the practical or measured result.

OBSERVATION TABLE :

Z-Parameters :

$\mathrm{V}_{1}=$ \qquad $\mathrm{Vdc}, \mathrm{I}_{2}=0$.

Open circuit voltage " $\mathrm{V}_{\mathbf{2}}$ "	Input Current " $\mathbf{I}_{1} "$	$\mathbf{Z}_{11}=\mathrm{V}_{\mathbf{1}} / \mathbf{I}_{\mathbf{1}}$	$\mathbf{Z}_{21}=\mathrm{V}_{\mathbf{2}} / \mathbf{I}_{\mathbf{1}}$

$\mathrm{V}_{2}=$ $\mathrm{Vdc}, \mathrm{I}_{1}=0$.

Open circuit voltage " $\mathrm{V}_{\mathbf{1}}$ "	Input Current " I_{2} "	$\mathrm{Z}_{12}=\mathrm{V}_{\mathbf{1}} / \mathrm{I}_{\mathbf{2}}$	$\mathrm{Z}_{\mathbf{2 2}}=\mathrm{V}_{\mathbf{2}} / \mathbf{I}_{\mathbf{2}}$

THEORITICAL TABLE :

$\mathbf{Z}_{11}=\mathbf{V}_{1} / \mathbf{I}_{1}$	$\mathbf{Z}_{21}=\mathbf{V}_{2} / \mathbf{I}_{1}$	$\mathbf{Z}_{12}=\mathbf{V}_{1} / \mathbf{I}_{\mathbf{2}}$	$\mathbf{Z}_{22}=\mathbf{V}_{\mathbf{2}} / \mathbf{I}_{\mathbf{2}}$

Y-Parameters :

$$
\mathrm{V}_{1}=\ldots \quad \mathrm{Vdc}, \mathrm{~V}_{2}=0 .
$$

Short circuit current " I_{2} "	Input Current " I_{1} "	$\mathrm{Y}_{11}=\mathrm{I}_{1} / \mathrm{V}_{1}$	$\mathrm{Y}_{21}=\mathrm{I}_{\mathbf{2}} / \mathrm{V}_{\mathbf{1}}$

$V_{2}=$ \qquad $\mathrm{Vdc}, \mathrm{V}_{1}=\mathbf{0}$.

Short circuit current "I $l_{1} "$	Input Current " $I_{2} "$	$Y_{12}=I_{1} / V_{2}$	$Y_{22}=I_{2} / V_{2}$

THEORITICAL TABLE :

$\mathbf{Y}_{11}=\mathbf{I}_{1} / \mathbf{V}_{1}$	$\mathbf{Y}_{21}=\mathbf{I}_{2} / \mathbf{V}_{1}$	$\mathbf{Y}_{12}=\mathbf{I}_{1} / \mathbf{V}_{\mathbf{2}}$	$\mathbf{Y}_{22}=\mathbf{I}_{\mathbf{2}} / \mathbf{V}_{\mathbf{2}}$

H-Parameters :

$$
\mathrm{V}_{1}=
$$

\qquad $\mathrm{Vdc}, \mathrm{V}_{2}=0$.

Short circuit current " $\mathbf{I}_{\mathbf{2}} "$	Input Current " $\mathbf{I}_{1} "$	$\mathrm{H}_{11}=\mathrm{V}_{\mathbf{1}} / \mathbf{I}_{\mathbf{1}}$	$\mathrm{H}_{\mathbf{2 1}}=\mathbf{I}_{\mathbf{2}} / \mathbf{I}_{\mathbf{1}}$

$\mathrm{V}_{2}=$ \qquad $\mathrm{Vdc}, \mathrm{I}_{1}=0$.

Open circuit voltage " V_{1} "	Input Current "I2"	$\mathrm{H}_{12}=\mathrm{V}_{\mathbf{1}} / \mathrm{V}_{\mathbf{2}}$	$\mathrm{H}_{22}=\mathrm{I}_{\mathbf{2}} / \mathrm{V}_{\mathbf{2}}$

THEORITICAL TABLE :

$\mathrm{H}_{11}=\mathrm{V}_{1} / \mathbf{I}_{1}$	$\mathrm{H}_{21}=\mathbf{I}_{\mathbf{2}} / \mathbf{I}_{\mathbf{1}}$	$\mathrm{H}_{12}=\mathrm{V}_{1} / \mathrm{V}_{\mathbf{2}}$	$\mathrm{H}_{22}=\mathrm{I}_{\mathbf{2}} / \mathrm{V}_{\mathbf{2}}$

CALCULATION :

