Question Bank

COLLEGE OF ENGINEERING \& TECHNOLOGY

1	CIRCUIT VARIABLES AND CIRCUIT ELEMENTS AND SOURCES				
Sr. No.	Questions	n	0 7 1 2	N ' I 2	$\stackrel{\sim}{1}$
1.	Mention the relations between voltage and current for the following passive elements. (1) Resistor (2) Capacitor.	3			
2.	Draw the characteristics and differentiate between ideal current source and actual current source.	4			
3.	Find the current passing through the 2 Ohm resistor using Mesh analysis for the circuit shown in the following figure.	7			
4.	Explain the characteristic of an ideal current source.		3		
5.	Write the voltage current relationships of pure inductor and pure capacitor.		4		
6.	Explain characteristic of an ideal current source.			4	

| 7. | Define following terms: (a) Linear and Nonlinear Networks (b) Lumped and Distributed Networks | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 8. | In the network of figure:2, determine the $i 2$ using Source Transformation method. | | |

2	NODAL ANALYSIS AND MESH ANALYSIS OF RESISTIVE CIRCUITS				
Sr. No.	Questions	n	0 \vdots \vdots \vdots 	N خ I 2	
1.	Explain the principle of source transformation to obtain equivalent voltage source from a current source.	3			
2.	Briefly describe the nodal analysis with a small example.	4			
3.	Find the current passing through 3 Ohm resistor in the following circuit using nodal analysis.	7			
4.	Briefly explain the mesh analysis.		3		

Question Bank
college of engineering \& technology

5.	Differentiate between mesh analysis and nodal analysis	4		
6.	Explain principle of source transformation to obtain equivalent current source from a voltage source.		3	
7.	Find the value of all currents and voltage across 5Ω resister for the network shown in figure 2 using mesh analysis.		7	
8.	Apply nodal analysis for the network shown in figure 3 and find current across 2Ω resister connected between two nodes.		7	
9.	Find the value of $V x$ in the circuit of figure:5, using mesh analysis. \(
)			7	

3	CIRCUIT THEOREMS AND THEIR APPLICATION IN ELECTRIC NETWORKS				
Sr. No.	Questions	$\xrightarrow{\text { n }}$		N i İ 2	$\stackrel{\sim}{n}$
1.	Obtain the value of Norton's equivalent current and Norton's equivalent resistance for the network shown in the following figure.	7			
2.	Briefly describe Millman's theorem.	3			
3.	Obtain the value of Thevenin's equivalent voltage and Thevenin's equivalent resistance for the network shown in the following figure.		7		

	Values of all resistors are in Ohms			
4.	Briefly describe superposition theorem.	3		
5.	Explain the reciprocity theorem.	4		
6.	Draw the dual of network shown in figure		4	
7.	State and explain maximum power transfer theorem.		3	
8.	Find voltage VX in the network shown in figure 4 using superposition theorem.		7	

Question Bank
Subject: ECA

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& \multicolumn{5}{|l|}{TIME DOMAIN RESPONSEOF FIRST ORDER RL AND RC CIRCUITS} \\
\hline Sr. No. \& Questions \& n \& 0
1
1
1
2 \& A
̇

2 \& $\stackrel{\sim}{\square}$ \\
\hline 1. \& Derive the equation of inductor current and draw its waveform for a series R-L circuit connected to a step input voltage. \& 4 \& \& \& \\
\hline 2. \& What do you mean by a first order system? Give two examples of first order systems. Explain the procedure to obtain the transient response of a first order system. \& 7 \& \& \& \\
\hline 3. \& Explain the time response of R-L-C series circuit with step input. Assume critically damped system. \& \& 4 \& \& \\

\hline 4. \& | How the following elements will behave at $t=0$ and $t=\infty$. Draw the equivalent network as well. |
| :--- |
| (a) Inductor (b) Capacitor. | \& \& \& \& 4 \\

\hline 5. \& | In the circuit shown in figure: 8 , voltage and current expressions are $v(t)=100 e-1000 t V, t \geq 0$ and $i(t)=5 e-1000 \operatorname{tm} A, t \geq 0$. Find (a) R, C and Time Constant (τ). (b) Initial energy stored in capacitor. |
| :--- |
| Figure: 8 | \& \& \& \& 4 \\

\hline 6. \& Explain and derive the step response to R-L series circuit using Laplace Transformation method \& \& \& \& 4 \\
\hline
\end{tabular}

5	TIME DOMAIN RESPONSE OF SECOND ORDER LINEAR CIRCUITS				
Sr. No.	Questions	n			
1.	With suitable example explain how the Laplace transform is useful in obtaining the transient response of a second order system.	7			
2.	Take suitable example of a first order system and explain the procedure to obtain its transient response.		7		
3.	What is time constant? What is its significance?				3

6	INITIAL CONDITIONS				
Sr. No.	Questions	n	0 \vdots \vdots \vdots 2	N ̇ ̇ 2	$\stackrel{\sim}{1}$
1.	Find out the values of ' v ' ; ' $\mathrm{dv} / \mathrm{dt}$ ' and ' $\mathrm{d} 2 \mathrm{v} / \mathrm{dt2}$ ' just after switching (at time $\mathrm{t}=0+$) in the circuit shown in the following figure.	7			
2.	Describe the steps to evaluate the initial conditions of a network.	3			
3.	Find out the values of ' i ' ; ' $\mathrm{di} / \mathrm{dt}$ ' and ' $\mathrm{d} 2 \mathrm{i} / \mathrm{dt} 2$ ' just after switching (at time $\mathrm{t}=0+$) in the circuit shown in the following figure.		7		

7	LAPLACE TRANSFORM ANALYSIS AND CIRCUIT APPLICATIONS				
Sr. No.	Questions	n	0 7 1 1 2	N i İ 2	$\stackrel{\sim}{1}$
1.	(a) Find out the poles of the system described in the immediately next 03 question i.e. Q-3(b). (b) Write the circuit equations for a series RC circuit connected to a DC 04 supply. Using Laplace transform, obtain the transfer function between capacitor voltage and supply voltage.	7			
2.	Write the circuit equations for a series RL circuit connected to a DC supply. Using Laplace transform, obtain the transfer function between Inductor current and supply voltage.		3		
3.	Find the poles of the system described in previous question i.e. Q-2 (above question mentioned)		4		
4.	Briefly describe the application of Laplace transform for transfer function approach in circuit analysis.		7		
5.	What is impulse function? Find the impulse response for the network function $\mathrm{H}(\mathrm{S})=5 /(\mathrm{S} 2+\mathrm{S}+1)$			4	
6.	Derive Laplace Transform of $f(t)=t u(t)$.				3
7.	State the procedure to obtain solution of a network using Laplace Transform method. State advantages of Laplace method over classical method.				4

8	LAPLACE TRANSFORM ANALYSIS AND TRANSFER FUNCTION APPLICATIONS				
Sr. No.	Questions	n	¢ \vdots \vdots O 2	N İ I 2	$\stackrel{\infty}{\sim}$
1.	Explain the procedure to obtain sinusoidal steady state response of a circuit.	7			
2.	In the network shown in figure 9 , switch K is moved from a to b at $t=0$, steady state having previously been attained. Determine current $\mathrm{i}(\mathrm{t})$. Figute 9			7	
3.	Using Laplace transformation, solve the following differential equation. $d 2 i d t 2+4 d i d t+8 i=$ $8 u(t)$. Given that $i(0+)=3$ and $d i d t(0+)=-4$.				4

9	TWO PORT NETWORKS				
Sr. No.	Questions	$\xrightarrow[\text { n }]{\text { n }}$	0 $>$ 0		$\stackrel{\infty}{\substack{1 \\ \vdots}}$
1.	Find out the Z-parameters of the two port network shown in the following figure. Values of all resistors are in Ohms	7			
2.	Find out the equivalent $A B C D$ parameters of the cascade combination of two networks as shown in the following figure.	3			
3.	Find out the Y -parameters of the network shown in the following figure.	4			

Question Bank
Subject: ECA

10.	Write equations of Short circuit Admittance and Open Circuit Impedance parameters of a two port network.			
11.	Derive formulae to convert given y - parameters into h - parameters.			
12.	For the network of figure: 12, find the z and y parameters.			

