

## **ASSIGNMENT : 2**

1. Using super position theorem to find power generated by each of the five source in fig. given that  $V_{S1} = 4V$ ,  $V_{S2} = 6V$ ,  $V_{S3} = 10^3 i_3$ ,  $I_{S1} = 2mA$ ,  $I_{S2} = 0.5$ 



2. Replace the active network show in fig. with a Norton's equivalent network at the terminals AB.



3. Determine  $X_1$  and  $X_2$  in term of  $R_1$  and  $R_2$  to give maximum power dissipation in  $R_2$ .



4. Use Thevenin's theorem to find the power delivered to the  $3\Omega$  resistance in the network of fig.





5. Apply super position theorem to find the current in  $(3 + j4)\Omega$  impedance in a network of fig.

