

ASSIGNMENT: 6 TACHEOMETRIC SURVEY

- Q.1 Derive the expression for the horizontal and vertical distances in the fixed hair method when the staff is held vertically and the measured angle is that of elevation.
- **Q.2** What is tacheometricsurveying ? What are the advantages of tacheometric surveying ? Explain various methods of tacheometry.
- **Q.3** What is tangential method of tacheometry? Derive the expressions for horizontal and vertical distances by the tangential method when both the angles measured are those of elevation.
- **Q.4** Explain principle of stadia method.
- Q.5 The following observations were taken using a tacheometer fitted with an anallatic lens, the staff being held vertically. The constant of tacheometer is 100.

Inst. st.	Height of axis	Staff station	Vertical Angle	Hair readings	Remarks
Р	1.45	B.M	$-6^{\circ}12'$	0.98,1.54,2.10	R.L of
Q	1.45	Q	$+7^{0}5'$	0.83,1.36,1.89	B.M
R	1.57	R	$+12^{0} 21'$	1.89,2.48,3.07	=384.25 m

Determine the distances PQ and QR and the R.Ls of P,Q and R

Q.6 During the course of a tacheometric survey, the following readings were recorded

Inst. st.	Height of axis	Staff station	Vertical Angle	Hair readings	Remarks
0	1.750	B.M	$-8^{\circ}24$	1.250, 1.600, 1.950	R.L of
0	1.650	СР	$-7^{0}12$	1.430, 1.580, 1.730	B.M
Р	1.570	СР	$+9^{\circ} 36'$	1.670, 1.950, 2.230	=312.670m

The tacheometer was anallatic and the multiplying constant was 100. The staff was held vertical. Calculate the RL of station P.

Q.7 To determine the gradient between two points P and Q, a tacheometer was set up at another station R and the following observations were taken, keeping the staff vertical.

Staff at	Vertical Angle	Hair readings	
Р	$+4^{0} 40$ '	1.210,1.510,1.810	
Q	$-4^{0}40'$	1.000,1.310,1.620	

If the horizontal angle PRQ is $36^{\circ}20\phi$, determine the average gradient between P and Q. Take A=100, B=0 and RL of HI=100 M.

Q.8 The following readings refer to a closed traverse ABCDA run by a tacheometer fitted with analyticlens. The constant of the instrument was 100 and the staff was normal.

Line	Bearing	Vertical Angle	Staff interception
AB	40° 20'	$+4^{0}00$	1.750
BC	310° 40'	$+3^{0}10'$	1.480
CD	220° 00'	$+2^{0}20'$	1.670

Find the length and bearing of DA.

Q.9 Find the gradient from P to Q using the data given in Table

Inst. at	Staff at	Line	Bearing	Vertical Angle	Hair readings
A	Р	AP	84 ⁰ 36'	3 [°] 30'	1.35, 2.10, 2.85
A	Q	AQ	$142^{\circ} 24'$	$2^{0} 45'$	1.9555, 2.875, 3.765

