ASSIGNMENT: 6 TACHEOMETRIC SURVEY

Q. 1 Derive the expression for the horizontal and vertical distances in the fixed hair method when the staff is held vertically and the measured angle is that of elevation.
Q. 2 What is tacheometricsurveying? What are the advantages of tacheometric surveying ? Explain various methods of tacheometry.
Q. 3 What is tangential method of tacheometry? Derive the expressions for horizontal and vertical distances by the tangential method when both the angles measured are those of elevation.
Q. 4 Explain principle of stadia method.
Q. 5 The following observations were taken using a tacheometer fitted with ananallatic lens, the staff being held vertically. The constant of tacheometer is 100 .

Inst. st.	Height of axis	Staff station	Vertical Angle	Hair readings	Remarks
P	1.45	B.M	$-6^{0} 12^{\prime}$	$0.98,1.54,2.10$	R.L of B.M
Q	1.45	Q	$+7^{0} 5^{\prime}$	$0.83,1.36,1.89$	$=384.25$ m
R	1.57	R	$+12^{0} 21^{\prime}$	$1.89,2.48,3.07$	m y

Determine the distances PQ and QR and the R.Ls of P, Q and R
Q. 6 During the course of a tacheometric survey, the following readings were recorded

Inst. st.	Height of axis	Staff station	Vertical Angle	Hair readings	Remarks
O	1.750	B.M	$-8^{0} 24^{\prime}$	$1.250,1.600,1.950$	R.L of
O	1.650	CP	$-7^{0} 12^{\prime}$	$1.430,1.580,1.730$	B.M
P	1.570	CP	$+9^{0} 36^{\prime}$	$1.670,1.950,2.230$	$=312.670 \mathrm{~m}$

The tacheometer was anallatic and the multiplying constant was 100 . The staff was held vertical. Calculate the RL of station P.
Q. 7 To determine the gradient between two points P and Q , a tacheometer was set up at another station R and the following observations were taken, keeping the staff vertical.

Staff at	Vertical Angle	Hair readings
P	$+4^{0} 40^{\prime}$	$1.210,1.510,1.810$
Q	$-4^{0} 40^{\prime}$	$1.000,1.310,1.620$

If the horizontal angle PRQ is $36^{\circ} 20 \phi$, determine the average gradient between P and Q . Take $\mathrm{A}=100, \mathrm{~B}=0$ and RL of $\mathrm{HI}=100 \mathrm{M}$.
Q. 8 The following readings refer to a closed traverse ABCDA run by a tacheometer fitted with analyticlens. The constant of the instrument was 100 and the staff was normal.

Line	Bearing	Vertical Angle	Staff interception
AB	$40^{\circ} 20^{\prime}$	$+4^{\circ} 00^{\prime}$	1.750
BC	$310^{\circ} 40^{\prime}$	$+3^{\circ} 10^{\prime}$	1.480
CD	$220^{\circ} 00^{\prime}$	$+2^{\circ} 20^{\prime}$	1.670

Find the length and bearing of DA.
Q. 9 Find the gradient from P to Q using the data given in Table

Inst. at	Staff at	Line	Bearing	Vertical Angle	Hair readings
A	P	AP	$84^{0} 36^{\prime}$	$3^{0} 30^{\prime}$	$1.35,2.10,2.85$
A	Q	AQ	$142^{0} 24^{\prime}$	$2^{0} 45^{\prime}$	$1.9555,2.875,3.765$

