COLLEGE OF ENGINEERING & TECHNOLOGY

Module - 5 Area & Volume

Subject:- Surveying Code:-3140601 Prepared by: Asst.Prof. Janki Patel (Civil Department, ACET)

- In civil engineering the area calculation is the most important.
- Road and railway land is to be acquire on the bass of area.
- Finding the area is the essential part of the surveying.

• There are main four method of computation of the area by taking offset.

Area calculation Method Mid Ordinate rule

Average Ordinate rule

Trapezoidal rule

Simpson's rule

<u>1. Mid Ordinate rule</u>

- Base line divided in to number of divisions.
- The ordinate are measured at the mid points of each division.
- Boundary between the offset are considered straight line.

• Area =
$$\frac{(h_1 + h_2 + h_3 + \dots + hn)}{n}$$
 X L

• Area =
$$\frac{(h_1 + h_2 + h_3 + \dots + hn)}{n}$$
 X nd

- Area = $(h_1 + h_2 + h_3 + \dots + h_n) \times d$
- Where $h_1 + h_2 + h_3 + \dots = mid ordinate$
- d = distance of each division
- L = Length of base line = nd
- n = number of division

2. Average Ordinate rule

• This rules also assumed that the boundary between the extremities of the ordinates are straight line.

• Area =
$$\frac{(h_0 + h_1 + h_2 + h_3 + \dots + h_n)}{(n+1)}$$
 X L

• Area =
$$\frac{(h_0 + h_1 + h_2 + h_3 + \dots hn)}{(n+1)}$$
 X nd

- Where $h_0 h_1 h_2 h_3 \dots \dots =$ Ordinates or offset
- d = distance of each division
- n = number of division
- n +1 = number of offset
- I = length of base line = nd

<u>3. Trapezoidal rule</u>

- In this method entire area is divided in to number of trapezoids.
- This rule is more accurate than previous two rule.

- Let h₁, h₂, h₃, h_n be the ordinates at equal interval.
- d = common distance

• 1 st area =
$$\frac{(h_0 + h_1)}{2} X d$$

• 2 nd area =
$$\frac{(h_1 + h_2)}{2}$$
 X d

• 3 rd area =
$$\frac{(h_2 + h_3)}{2}$$
 X d

• Last area =
$$\frac{(h_{n-1}+h_n)}{2} X d$$

• Total area = $A_1 + A_2 + A_3 + \dots + A_n$

• Total area =
$$\frac{(h_0 + h_1)}{2} X d + \frac{(h_1 + h_2)}{2} X d + \frac{(h_2 + h_3)}{2} X d$$

+.....+ $\frac{(h_{n-1} + h_n)}{2} X d$

• =
$$\frac{d}{2}$$
 (h₀ + 2h₁ + 2h₂ + 2h₃ + + 2h_{n-1} + h_n)

•
$$A = \frac{d}{2} (h_0 + h_n) + 2(h_1 + h_2 + h_3 + \dots + h_{n-1})$$

• A =
$$\frac{Common\ distance}{2}$$
 ((1st Ordinates + Last
Ordinates) + 2(Sum of other ordinates))

4. Simpson's rule

• This rule assumes that the short lengths of boundary between the ordinates are parabolic arcs.

- Let h₀, h₁, h₂ be the consecutive co-ordinates.
- Area of AA₁B₂C₁CA
- = Area of trapezium AA₁B₁C₁CA + Area of Segment A₁B₂C₁B₁A₁
- Area of trapezium = $\frac{(h_0 + h_2)}{2}$ X 2d
- Area of segment = $\frac{2}{3}$ X area of parallelogram A₁A₂C₂C₁

• =
$$\frac{2}{3}$$
 X B₁B₂ X 2d
• = $\frac{2}{3}$ X (h₁ - $\frac{h_0 + h_2}{2}$) X 2d

Area between the first two divisions.

•
$$A_1 = \frac{(h_0 + h_2)}{2} \times 2d + \frac{2}{3} \times (h_1 - \frac{h_0 + h_2}{2}) \times 2d$$

•
$$A_1 = \frac{d}{3} (h_0 + 4h_1 + h_2)$$

• Similarly the area between two divisions.

•
$$A_2 = \frac{d}{3} (h_2 + 4h_3 + h_4)$$

• Total area = $A_1 + A_2 + A_3 + \dots + A_n$

• =
$$\frac{d}{3}$$
 (h₀ + 4h₁ + 2h₂ + 4h₃ + 2h₄ +)

• = $\frac{d}{3}(h_0 + h_n) + 4(h_1 + h_3 + h_{n-1}) + 2(h_2 + h_4 + h_{n-2})$

LEGE OF ENGINEERING & TECHNOLOGY

$$A = \frac{d}{3} (h_0 + h_n) + 4(h_1 + h_3 + h_{n-1}) + 2(h_2 + h_4 + h_{n-2})$$

 $A = \frac{Common \ distance}{3} X (1^{st} \ Ordinate + Last \ Ordinate)$ + 4(Sum of even ordinate) + 2(Sum of odd ordinate)

Planimeter A Planimeter is a device the determines area by tracing the boundary on a map.

- There are main two type of the planimeter.
- a) Amsler Polar Planimeter
- b) Roller planimeter

Mathematical Formulae

Mathematical Formulae

(g) Circular ring

$$\pi \left(r_2^2 - r_1^2 \right)$$

(h) Circular sector

 $\frac{1}{360} \pi \cdot \Delta \cdot r^2$

(i) Circular segment

 $\frac{1}{2}r^2\left(\frac{\pi\Delta}{180}-\sin\Delta\right)$

 $\pi(\mathbf{a} \cdot \mathbf{b})$

(k) Parabola

The various component part of a polar planimeter is as follow

COLLEGE OF ENGINEERING & TECHNOLOGY

Construction

- Two arm
- One is anchor arm
- Second is tracing arm
- Anchor arm is fixed in length
- Tracing arm length is varied by means of fixed screw.
- Two point
- One is anchor point attached at the end of the anchor arm.
- Second is tracing point attached at the end of the tracing arm.

- The wheel carries a concentric drum which is divided in to 100 division.
- A smaller vernier near the drum reads 1/10 of the drum division .
- Each reading in the form of the four digits.

Procedure

- Fix the anchor point (outside or inside the area).
- Mark the tracing point on the boundary of the plan.
- Initial reading is taken.
- Tracing point is moved in clock wise direction along the boundary till it come to the original point.
- Final reading is noted.

- The area of the figure is then calculated from the following equation.
- Area (Δ) = M (F I ± 10 N + C)
- Where F = Final reading

I = Initial reading

M = A multiplying constant, it is equal to the area per revolution of the roller.

N = The no. of times the zero mark of the dial passed the fixed index mark.

C = Instrument constant

