AMIRAJ

COLLEGE OF ENGINEERING \& TECHNOLOGY

Module - 5 Area \& Volume

Introduction

- In civil engineering the area calculation is the most important.
- Road and railway land is to be acquire on the bass of area.
- Finding the area is the essential part of the surveying.

Computation of the area by taking offset

- There are main four method of computation of the area by taking offset.

Area
$\underset{\substack{\text { calcuation } \\ \text { Alution }}}{ }$ Mid Ordinate rule

Average Ordinate rule

Trapezoidal rule

Simpson's rule

1. Mid Ordinate rule

- Base line divided in to number of divisions.
- The ordinate are measured at the mid points of each division.
- Boundary between the offset are considered straight line.

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Area $=\frac{\left(h_{1}+h_{2}+h_{3}+\ldots \ldots \ldots+h n\right)}{n} \times \mathrm{L}$
- Area $=\frac{\left(h_{1}+h_{2}+h_{3}+\ldots \ldots+h n\right)}{n} \mathrm{X}$ nd
- Area $=\left(h_{1}+h_{2}+h_{3}+\ldots \ldots \ldots \ldots+h n\right) \times \mathrm{d}$
- Where $h_{1}+h_{2}+h_{3}+\ldots$. = mid ordinate
- $d=$ distance of each division
- $L=$ Length of base line = nd
- $\mathrm{n}=$ number of division

COLLEGE OF ENGINEERING \& TECHNOLOGY

2. Average Ordinate rule

- This rules also assumed that the boundary between the extremities of the ordinates are straight line.

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Area $=\frac{\left(h_{0}+h_{1}+h_{2}+h_{3}+\ldots \ldots \ldots . . . h_{n}\right)}{(n+1)} \times \mathrm{L}$
- Area $=\frac{\left(h_{0}+h_{1}+h_{2}+h_{3}+\ldots \ldots \ldots . . . h n\right)}{(n+1)} \mathrm{X}$ nd
- Where $h_{0} h_{1} h_{2} h_{3} \ldots \ldots=$ Ordinates or offset
- $d=$ distance of each division
- $\mathrm{n}=$ number of division
- $\mathrm{n}+1$ = number of offset
- $\mathrm{I}=$ length of base line = nd

COLLEGE OF ENGINEERING \& TECHNOLOGY

3. Trapezoidal rule

- In this method entire area is divided in to number of trapezoids.
- This rule is more accurate than previous two rule.

IRAJ

- Let $h_{1}, h_{2}, h_{3}, \ldots h_{n}$ be the ordinates at equal interval.
- $\mathrm{d}=$ common distance
- 1 st area $=\frac{\left(h_{0}+h_{1}\right)}{2} \mathrm{Xd}$
- 2 nd area $=\frac{\left(h_{1}+h_{2}\right)}{2} \times \mathrm{d}$
- 3 rd area $=\frac{\left(h_{2}+h_{3}\right)}{2} \mathrm{Xd}$
- Last area $=\frac{\left(h_{\mathrm{n}-1}+h_{n}\right)}{2} \mathrm{Xd}$
- Total area $=A_{1}+A_{2}+A_{3}+\ldots+A_{n}$
- Total area $=\frac{\left(h_{0}+h_{1}\right)}{2} \times \mathrm{d}+\frac{\left(h_{1}+h_{2}\right)}{2} \times \mathrm{d}+\frac{\left(h_{2}+h_{3}\right)}{2} \times \mathrm{d}$ $+\ldots \ldots \ldots \ldots \ldots+\frac{\left(h_{\mathrm{n}-1}+h_{n}\right)}{2} \mathrm{X} \mathrm{d}$
- $=\frac{d}{2}\left(h_{0}+2 h_{1}+2 h_{2}+2 h_{3}+\ldots \ldots \ldots \ldots+2 h_{n-1}+h_{n}\right)$
- $A=\frac{d}{2}\left(h_{0}+h_{n}\right)+2\left(h_{1}+h_{2}+h_{3}+\ldots \ldots \ldots . .+h_{n-1}\right)$
- $A=\frac{\text { Common distance }}{2}\left(\left(1^{\text {st }}\right.\right.$ Ordinates + Last Ordinates) +2 (Sum of other ordinates))

4. Simpson's rule

- This rule assumes that the short lengths of boundary between the ordinates are parabolic arcs.

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Let h_{0}, h_{1}, h_{2} be the consecutive co-ordinates.
- Area of $\mathrm{AA}_{1} \mathrm{~B}_{2} \mathrm{C}_{1} \mathrm{CA}$
- = Area of trapezium $\mathrm{AA}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{CA}+$ Area of Segment $A_{1} B_{2} C_{1} B_{1} A_{1}$
- Area of trapezium $=\frac{\left(h_{0}+h_{2}\right)}{2} \times 2 \mathrm{~d}$
- Area of segment $=\frac{2}{3} \mathrm{X}$ area of parallelogram $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{C}_{2} \mathrm{C}_{1}$
- $=\frac{2}{3} \times \mathrm{B}_{1} \mathrm{~B}_{2} \times 2 \mathrm{~d}$
- $=\frac{2}{3} \times\left(\mathrm{h}_{1}-\frac{h_{0}+h_{2}}{2}\right) \times 2 \mathrm{~d}$
- Area between the first two divisions.
- $\mathrm{A}_{1}=\frac{\left(h_{0}+h_{2}\right)}{2} \times 2 \mathrm{~d}+\frac{2}{3} \times\left(\mathrm{h}_{1}-\frac{h_{0}+h_{2}}{2}\right) \times 2 \mathrm{~d}$
- $\mathrm{A}_{1}=\frac{d}{3}\left(\mathrm{~h}_{0}+4 \mathrm{~h}_{1}+\mathrm{h}_{2}\right)$
- Similarly the area between two divisions.
- $\mathrm{A}_{2}=\frac{d}{3}\left(\mathrm{~h}_{2}+4 \mathrm{~h}_{3}+\mathrm{h}_{4}\right)$
- Total area $=A_{1}+A_{2}+A_{3}+\ldots+A n$
- $=\frac{d}{3}\left(h_{0}+4 h_{1}+2 h_{2}+4 h_{3}+2 h_{4}+\ldots\right)$

$$
A=\frac{d}{3}\left(h_{0}+h_{n}\right)+4\left(h_{1}+h_{3}+h_{n-1}\right)+2\left(h_{2}+h_{4}+h_{n-2}\right)
$$

$A=\frac{\text { Common distance }}{3} \times\left(1^{\text {st }}\right.$ Ordinate + Last Ordinate $)$
+4 (Sum of even ordinate) +2 (Sum of odd ordinate)

Planimeter

- A Planimeter is a device the determines area by tracing the boundary on a map.
- There are main two type of the planimeter.
a) Amsler Polar Planimeter
b) Roller planimeter

COLLEGE OF ENGINEERING \& TECHNOLOGY

Mathematical Formulae

(a) Triangle
$\frac{1}{2} \mathrm{bh} \quad$ or $\frac{1}{2} \mathrm{a} \cdot \mathrm{b} \cdot \sin (\mathrm{C})$

(d) Trapezoid

$$
\frac{1}{2} \mathrm{~h} \cdot(\mathrm{a}+\mathrm{b})
$$

(b) Square

(e) Regular polygon

$$
\frac{1}{4} n \cdot a^{2} \cdot \cot \left(\frac{180^{\circ}}{n}\right)
$$

(c) Rectangle

$$
a \cdot b
$$

Mathematical Formulae

(g) Circular ring

$$
\pi\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)
$$

(j) Ellipse

$$
\pi(\mathrm{a} \cdot \mathrm{~b})
$$

(h) Circular sector

$$
\frac{1}{360} \pi \cdot \Delta \cdot r^{2}
$$

(k) Parabola
$\frac{2}{3} \mathrm{bh}$
(i) Circular segment $\frac{1}{2} r^{2}\left(\frac{\pi \Delta}{180}-\sin \Delta\right)$

The various component part of a polar planimeter is as follow

Construction

- Two arm
- One is anchor arm
- Second is tracing arm
- Anchor arm is fixed in length
- Tracing arm length is varied by means of fixed screw.
- Two point
- One is anchor point attached at the end of the anchor arm.
- Second is tracing point attached at the end of the tracing arm.
- The wheel carries a concentric drum which is divided in to 100 division.
- A smaller vernier near the drum reads $1 / 10$ of the drum division .
- Each reading in the form of the four digits.

Procedure

- Fix the anchor point (outside or inside the area).
- Mark the tracing point on the boundary of the plan.
- Initial reading is taken.
- Tracing point is moved in clock wise direction along the boundary till it come to the original point.
- Final reading is noted.
- The area of the figure is then calculated from the following equation.
- $\operatorname{Area}(\Delta)=\mathrm{M}(\mathrm{F}-\mathrm{I} \pm 10 \mathrm{~N}+\mathrm{C})$
- Where $\mathrm{F}=$ Final reading
I = Initial reading
$\mathrm{M}=\mathrm{A}$ multiplying constant, it is equal
to the area per revolution of the roller.
$\mathrm{N}=$ The no. of times the zero mark of the dial passed the fixed index mark.

C = Instrument constant

