## AMIRAJ

## COLLEGE OF ENGINEERING \& TECHNOLOGY

## Module - 6 <br> Tacheometric Surveying (Example)



## Formulas to Solve Examples

- Fixed Hair Method
- Case : 1 (When the line of sight is horizontal and staff is held Vertical)
- Horizontal distance $\mathbf{D}=\mathbf{K S}+\mathbf{C}$

Here $\quad \mathrm{D}=$ Horizontal Distance
S = Staff intercept
$\mathrm{K}=$ Multiplying Constant
$\mathrm{C}=$ Additive constant

## Example : 1

- The Following Reading were taken with a tacheometer on to a vertical staff, Calculate tacheometric constant

| Horizontal Distance | Stadia Reading (m) |  |  |
| :---: | :---: | :---: | :---: |
| 45 | 0.885 | 1.110 | 1.335 |
| 60 | 1.860 | 2.160 | 2.460 |

COLLEGE OF ENGINEERING \& TECHNOLOGY

> - $\mathrm{D}_{1}=\mathrm{KS}_{1}+\mathrm{C}$
> - $\mathrm{D}_{2}=\mathrm{KS}_{2}+\mathrm{C}$
> $\mathrm{D}_{1}=\mathrm{KS}_{1}+\mathrm{C}$
> $45=\mathrm{K}(1.335-0.885)+\mathrm{C}$
> $45=\mathrm{K}(0.45)+\mathrm{C}$
> $\mathrm{D}_{2}=\mathrm{KS}_{2}+\mathrm{C}$
> $60=\mathrm{K}(2.460-1.860)+\mathrm{C}$
> $60=\mathrm{K}(0.6)+\mathrm{C}$
> $\mathrm{C}=60-\mathrm{K}(0.6)$

Now put the value of eq 4 in eq 3

$$
\begin{equation*}
45=\mathrm{K}(0.45)+\mathrm{C} \tag{3}
\end{equation*}
$$

$45=\mathrm{K}(0.45)+60-\mathrm{K}(0.60)$
$45-60=-0.15 \mathrm{~K}$

- $15=-0.15 \mathrm{~K}$
$\mathrm{K}=100$
Put the value of $K$ in Eq no 3
$45=\mathrm{K}(0.45)+\mathrm{C}$
$45=100(0.45)+C$
$\mathrm{C}=0$


## Example 2

The stadia reading with horizontal sight at a vertical staff held 50 m away from the tacheometer were 1.385 and 2.380 . the focal length of the object glass was 25 cm . The distance between the object glass and trunion axis of a tacheometer was 15 cm . Calculate the stadia interval.

$$
\begin{align*}
& D=K S+C \\
& D=(f / i) S+(f+d) \tag{1}
\end{align*}
$$

Here $D=50 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{S}=2.380-1.385=0.995 \\
& \mathrm{f}=25 \mathrm{~cm}=0.25 \mathrm{~m} \\
& \mathrm{~d}=15 \mathrm{~cm}=0.15 \mathrm{~m}
\end{aligned}
$$



Put the all value in equation no 1

$$
50=((0.25 \times 0.995) / \mathrm{i})+(0.25+0.15)
$$

$\mathrm{i}=0.005 \mathrm{~m}$
$\mathrm{i}=5 \mathrm{~mm}$


## Example 3

- A staff held vertically at a distance of 50 m and 100 m from the centre of the theodolite with a stadia hair, the staff intercept with the telescope is 0.500 and 1.000 respectively. The instrument was then setup over a station P of RL 1850.95 m and the total height of instrument was 1.475 m . The hair reading on a staff held vertically at station Q were $1.050,1.900$ and 2.750 with the line of sigth horizontal. Calculate the horizontal distance of PQ and RL of Q ppint.
- Calculation of tacheometric constant

$$
\begin{align*}
& \mathrm{D}=\mathrm{KS}+\mathrm{C} \\
& 50=\mathrm{K}(0.005)+\mathrm{C} \ldots . . . . . . . . . .(1) \\
& 100=\mathrm{K}(1.000)+\mathrm{C} . . . . . . . . . . . . . .(2) \\
& 50=\mathrm{K}(0.005)+\mathrm{C} \ldots . . . . . . . . . . . . .(1) \\
& \mathrm{C}=50-0.005 \mathrm{~K} . \ldots . . . . . . . . . . .(3)  \tag{1}\\
& \text { Put the value of } \mathrm{C} \text { in } \mathrm{Eq} 2 \tag{3}
\end{align*}
$$

$100=\mathrm{K}(1.000)+\mathrm{C} . . . . . . . . . . . . . .(2)$
$100=1.000 \mathrm{~K}+50-0.005 \mathrm{~K}$
$\mathrm{K}=100$
Now put the value of $K$ in eq 3
$\mathrm{C}=50-0.005 \mathrm{~K}$
$\mathrm{C}=50-0.005$ (100)
$\mathrm{C}=0$
Note: if $\mathrm{K}=100$ and $\mathrm{C}=0$ means your instrument is perfect

- Calculation of horizontal distance between PQ



## D = KS + C ..........................(1)

Now

$$
\begin{aligned}
& \mathrm{S}=2.750-1.050=1.700 \mathrm{~m} \\
& \mathrm{~K}=100 \\
& \mathrm{C}=0
\end{aligned}
$$

Put all the value in equation no 1
$\mathrm{D}=100(1.700)+0$
$\mathrm{D}=170 \mathrm{~m}$

- Calculation of RL of Q point
- RL of $\mathrm{Q}=1850.95+1.475-1.900$

$$
=1850.525 \mathrm{~m}
$$

## Formulas to Solve Examples

- Fixed Hair Method
- Case : 2 (When the line of sight is inclined and staff is held Vertical)
- Horizontal distance $\mathbf{D}=K S \operatorname{Cos}^{2} \boldsymbol{\theta}+\mathbf{C}$ $\operatorname{Sin} \theta$
- Vertical Desistance V = KS Sin2日/2 + C $\operatorname{Sin} \theta$

COLLEGE OF ENGINEERING \& TECHNOLOGY

## Example 4

- A tachometer was setup at a station A and the following readings were obtain on a staff held vertically, calculate the horizontal distance AB and RL of B, when the constant of instrument are 100 and 0.15

| Inst. <br> Station | Staff <br> Station | Vertical <br> angle | Hair Reading (m) |  |  | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | BM | $-6^{0} 40^{\prime}$ | 1.200 | 1.900 | 2.600 | RL of BM $=$ |
|  | B | $+8^{0} 20^{\prime}$ | 0.800 | 1.600 | 2.400 |  |



- In the first observation

$$
\begin{aligned}
& \mathrm{S}_{1}=2.600-1.200=1.400 \mathrm{~m} \\
& \Theta_{1}=-6^{0} 40^{\prime} \quad(\text { Depression }) \\
& \mathrm{K}=100 \quad \text { and } \quad \mathrm{C}=0.15
\end{aligned}
$$

Vertical Desistance $\mathrm{V}_{1}=\mathrm{KS} \operatorname{Sin} 2 \theta / 2+\mathrm{C} \operatorname{Sin} \theta$
$=100(1.400) \sin \left(2 \times 6^{0} 40^{\prime}\right) / 2+0.15 \operatorname{Sin} 6^{0} 40^{\prime}$
$=16.143+0.0174$
$=16.160 \mathrm{~m}$

- In the second observation $\mathrm{S} 2=2.400-0.800=1.600$ $\Theta_{2}=+8^{02} 0^{\prime}$ (Elevation)

Vertical Desistance $V_{2}=K S \operatorname{Sin} 2 \theta / 2+C \operatorname{Sin} \theta$
$=100(1.600) \sin \left(2 \times 8^{0} 20^{\prime}\right) / 2+0.15 \operatorname{Sin} 8^{0} 20^{\prime}$
$=22.944+0.022$
$=22.966 \mathrm{~m}$

- Horizontal distance $\mathrm{D}_{2}=\mathrm{KS} \operatorname{Cos}^{2} \theta+\mathrm{C} \operatorname{Sin} \theta$ $=100(1.600) \operatorname{Cos}^{2} 8^{0} 20^{\prime}+0.15 \operatorname{Sin} 8^{0} 20^{\prime}$
$=156.639+0.148$
$=156.787 \mathrm{~m}$

RL of Instrument Axis $=$ RL of BM $+\mathrm{h} 1+\mathrm{V} 1$

$$
\begin{aligned}
& =850.500+1.900+16.160 \\
& =868.560 \mathrm{~m}
\end{aligned}
$$

## RL of B = RL of Inst. axis + V2 - h2

$$
\begin{aligned}
& =868.560+22.966-1.600 \\
\text { RL of B } & =889.926 \mathrm{~m}
\end{aligned}
$$

## Example 5

- To determine the gradient between two point P and Q a tacheometer was set up at a R station and the following observation where taken keeping the staff held vertical, if the horizontal angle PRQ is $36^{\circ} 20^{\prime}$ determine the avg. Gradient between P and Q Point take $K=100$ and $\mathrm{C}=0$ and RL of $\mathrm{HI}=100 \mathrm{~m}$

| Staffi station | Vertical angle | Staffi Reading |
| :---: | :---: | :---: |
| P | $+4^{0} 40^{\prime}$ | $1.210,1.510,1.810$ |
| Q | $-0^{0} 40^{\prime}$ | $1.000,1.310,1.620$ |



- In the first observation (From R to P) $\mathrm{S}_{1}=1.810-1.210=0.6 \mathrm{~m}$
$\Theta_{1}=+4^{0} 40^{\prime}$
Horizontal distance $\mathbf{D}=\mathrm{KS} \operatorname{Cos}^{2} \boldsymbol{\theta}+\mathrm{C} \operatorname{Sin} \boldsymbol{\theta}$
$=100 \times 0.6 \times \operatorname{Cos}^{2} 4^{0} 40^{\prime}+0$
$=59.60 \mathrm{~m}$
Vertical Desistance $V=K S \operatorname{Sin} 2 \theta / 2+C \operatorname{Sin} \theta$
$=100 \times 0.6 \times \operatorname{Sin}\left(2 \times 4^{0} 40^{\prime}\right) / 2+0$
$=4.865 \mathrm{~m}$
- In the Second observation (From R to Q)
$\mathrm{S}_{2}=1.620-1.000=0.62 \mathrm{~m}$
$\Theta_{2}=-0^{0} 40$,
Horizontal distance $\mathbf{D}=\mathrm{KS} \operatorname{Cos}^{2} \boldsymbol{\theta}+\mathrm{C} \operatorname{Sin} \boldsymbol{\theta}$
$=100 \times 0.62 \times \operatorname{Cos}^{2} 0^{0} 40^{\prime}+0$
$=61.99 \mathrm{~m}$
Vertical Desistance $\mathbf{V}=\mathbf{K S} \operatorname{Sin} 2 \boldsymbol{\theta} / 2+\mathbf{C} \operatorname{Sin} \boldsymbol{\theta}$
$=100 \times 0.62 \times \operatorname{Sin}\left(2 \times 0^{0} 40^{\prime}\right) / 2+0$
$=0.721 \mathrm{~m}$
- Avg. Gradient Between P and Q point


AMIRAJ

- Distance D1 $=P R=59.60 \mathrm{~m}$, Distance D2 $=\mathrm{QR}=61.99 \mathrm{~m}$ $\angle \mathrm{PRQ}=36^{\circ} 20^{\prime}$
$\mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2}-2 \times \mathrm{PR} \times \mathrm{QR} \times \operatorname{Cos} 36^{\circ} 20^{\prime}$

$$
\begin{aligned}
& \mathrm{PQ}^{2}=(59.60)^{2}+(61.99)^{2}-2 \times 59.60 \times 61.99 \times \operatorname{Cos} \\
& 36^{0} 20^{\prime} \\
& \mathrm{PQ}=37.978 \mathrm{~m}
\end{aligned}
$$

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Difference of Elevation between P and Q
- RL of $\mathrm{P}=\mathrm{RL}$ of $\mathrm{HI}+\mathrm{V}_{1}-\mathrm{h}_{1}$

$$
\begin{aligned}
& =100+4.865-1.510 \\
& =103.355 \mathrm{~m}
\end{aligned}
$$

- RL of $\mathrm{Q}=\mathrm{RL}$ of $\mathrm{HI}-\mathrm{V}_{2}-\mathrm{h}_{2}$

$$
\begin{aligned}
& =100-0.721-1.310 \\
& =97.969 \mathrm{~m}
\end{aligned}
$$

- Difference of RL of P \& Q = 103.355-97.969

$$
=5.386
$$

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Average gradient between P and Q
$=$ Difference in RL between P \& Q / Distance of P \& Q
$=5.386 / 37.978$
$=1 / 7.051$


## Formulas to Solve Examples

- Fixed Hair Method
- Case : 3 (When the line of sight is inclined and staff is held Normal to the line of signt)
- If angle is + ve
- Horizontal distance

$$
\mathrm{D}=\mathrm{KS} \operatorname{Cos} \theta+\mathrm{C} \operatorname{Cos} \theta+\mathrm{h} \operatorname{Sin} \theta
$$

- Vertical Desistance

$$
\mathbf{V}=K S \operatorname{Sin} \theta+C \operatorname{Sin} \theta
$$

- If angle is - ve
- Horizontal distance

$$
\mathbf{D}=\mathrm{KS} \operatorname{Cos} \theta+\mathrm{C} \operatorname{Cos} \theta-\mathrm{h} \operatorname{Sin} \theta
$$

- Vertical Desistance

$$
\mathbf{V}=K S \operatorname{Sin} \theta+C \operatorname{Sin} \theta
$$

COLLEGE OF ENGINEERING \& TECHNOLOGY

## Example 6

- Find out the distance between P and Q by using the bellow data given in table, the staff held normal to the line of sight in both the cases value of the tacheometer constant is 100 and 0.3

| Instrument | Staff <br> at | Line | Bearing | Vertical <br> angle | Hair Reading |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | P | AP | $84^{0} 36^{\prime}$ | $3^{0} 30^{\prime}$ | $1.35,2.10,2.85$ |
| A | Q | AQ | $142^{0} 24^{\prime}$ | $2^{0} 45^{\prime}$ | $1.955,2.875,3.765$ |



$$
\begin{aligned}
& \mathrm{S}_{1}=2.85-1.35=1.5 \mathrm{~m} \\
& \mathrm{~S}_{2}=3.765-1.955=1.809 \mathrm{~m}
\end{aligned}
$$

Horizontal Distance

$$
\begin{aligned}
\mathbf{A P}= & \mathbf{D}=\mathrm{KS}_{1} \operatorname{Cos} \theta_{1}+\mathrm{C} \operatorname{Cos} \theta_{1}+\mathrm{h}_{1} \operatorname{Sin} \theta_{1} \\
= & 100 \times 1.5 \times \operatorname{Cos} 3^{0} 30^{\prime}+0.3 \times \operatorname{Cos} 3^{0} 30^{\prime} \\
& +2.10 \times \operatorname{Sin} 3^{0} 30^{\prime} \\
= & 149.72+0.299+0.128 \\
= & 150.147 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A Q}=\mathbf{D}=\mathrm{KS}_{2} \operatorname{Cos} \theta_{2}+\mathrm{C} \operatorname{Cos} \theta_{2}+\mathrm{h}_{2} \operatorname{Sin} \theta_{2} \\
&=100 \times 1.809 \times \operatorname{Cos} 2^{0} 45^{\prime}+0.3 \times \operatorname{Cos} \\
& 2^{0} 45^{\prime} \quad+2.875 \times \operatorname{Sin} 2^{0} 45^{\prime} \\
&=180.742+0.299+0.138 \\
&=181.179 \mathrm{~m}
\end{aligned}
$$

- Angle $\mathrm{PAQ}=$ Bearing of $\mathrm{AP}-$ Bearing of AQ

$$
\begin{aligned}
& =142^{0} 24^{\prime}-84^{0} 36^{\prime} \\
& =57^{0} 48^{\prime}
\end{aligned}
$$



- Using Cosine rule $\mathrm{PQ}^{2}=\mathrm{AP}^{2}+\mathrm{AQ}^{2}-2 \times \mathrm{AP} \times \mathrm{AQ} \times \operatorname{Cos} 57^{0} 48^{\prime}$

$$
\mathrm{PQ}^{2}=(150.147)^{2}+(181.179)^{2}-2 \times 150.147 \mathrm{x}
$$

$181.179 \times \operatorname{Cos} 57^{0} 48$,
$P Q=162.41 \mathrm{~m}$

## Formulas to Solve Examples

- Tnagential Hair Method
- Case : 1 (Both the angle are angles of elevation in this case, staff is held vertically.)
- $\mathbf{H C}^{\mathrm{D}}=\frac{\mathrm{S}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)}$
- $V e^{V=\frac{S \tan \theta_{2}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)}} \mathrm{e}$

COLLEGE OF ENGINEERING \& TECHNOLOGY

## Example 7

- The vertical angles to vanes fixed at 1 m and 3 m above the foot of the staff held vertically at station Q were $+3^{0} 20^{\prime}$ and $6^{\circ} 40^{\prime}$ respectively from instrument station $P$. if the elevation of the instrument axis at station $P$ is 101.520 m calculate
(1) the Horizontal distance between P \& Q and (2) the elevation of the staff station Q )


$$
\begin{aligned}
& \mathrm{S}=3-2=1 \\
& \theta_{1}=6^{0} 40^{\prime} \\
& \theta_{2}=3^{0} 20^{\prime} \\
& \mathrm{h}=1 \\
& \mathrm{D}=\frac{\mathrm{S}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)} \\
& =\frac{2}{\tan 6^{0} 40^{\prime}-\tan 3^{0} 20^{\prime}} \\
& =34.13 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{S \tan \theta_{2}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)} \\
& =\frac{2 \times \tan 3^{0} 20^{\prime}}{\tan 6^{0} 40^{\prime}-\tan 3^{0} 20^{\prime}}, \\
& =1.99 \mathrm{~m}
\end{aligned}
$$

Elevation of Staff station $\mathrm{Q}=\mathrm{RL}$ of $\mathrm{HI}+\mathrm{V}-\mathrm{h}$

$$
\begin{aligned}
& =101.520+1.99-1.0 \\
& =102.510 \mathrm{~m}
\end{aligned}
$$

COLLEGE OF ENGINEERING \& TECHNOLOGY

## Formulas to Solve Examples

- Tnagential Hair Method
- Case : 2 (Both the angle are angles of Depression in this case, staff is held vertically.)
- Horizontal distance

$$
D=\frac{S}{\left(\tan \theta_{2}-\tan \theta_{1}\right)}
$$

- Vertical Desistance

$$
V=\frac{S \tan \theta_{2}}{\left(\tan \theta_{2}-\tan \theta_{1}\right)}
$$

## Example 8

- The vertical angles to vanes fixed at 1 m and 3 m above the foot of the staff held vertically at station Q were - $3^{0} 20^{\prime}$ and - $6^{0} 40^{\prime}$ respectively from instrument station $P$. if the elevation of the instrument axis at station $P$ is 101.520 m calculate
(1) the Horizontal distance between $\mathrm{P} \& \mathrm{Q}$ and (2) the elevation of the staff station Q )


$$
\begin{aligned}
& S=3-2=1 \\
& \theta_{1}=-3^{0} 20^{\prime} \\
& \theta_{2}=-6^{0} 40^{\prime} \\
& h=1 \\
& D=\frac{S}{\left(\tan \theta_{2}-\tan \theta_{1}\right)} \\
& =\frac{2}{\tan 6^{0} 40^{\prime}-\tan 3^{0} 20^{\prime}} \\
& =34.13 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{S \tan \theta_{2}}{\left(\tan \theta_{2}-\tan \theta_{1}\right)} \\
& =\frac{2 \times \tan 6^{0} 40^{\prime}}{\tan 6^{0} 40^{\prime}-\tan 3^{0} 20^{\prime}}, \\
& =3.99 \mathrm{~m}
\end{aligned}
$$

Elevation of Staff station $\mathrm{Q}=\mathrm{RL}$ of $\mathrm{HI}+\mathrm{V}-\mathrm{h}$

$$
\begin{aligned}
& =101.520-3.99-1.0 \\
& =96.530 \mathrm{~m}
\end{aligned}
$$

## Example 9

- The vertical angles to vanes fixed at 1 m and 3 m above the foot of the staff held vertically at station Q were $+3^{0} 20^{\prime}$ and $-6^{0} 40^{\prime}$ respectively from instrument station $P$. if the elevation of the instrument axis at station $P$ is 101.520 m calculate
(1) the Horizontal distance between $\mathrm{P} \& \mathrm{Q}$ and (2) the elevation of the staff station $Q$ )


$$
\begin{aligned}
& S=3-2=1 \\
& \theta_{1}=+3^{0} 20^{\prime} \\
& \theta_{2}=-6^{0} 40^{\prime} \\
& h=1 \\
& D=\frac{S}{\left(\tan \theta_{2}+\tan \theta_{1}\right)} \\
& =\frac{2}{\tan 3^{0} 20^{\prime}+\tan 6^{0} 40^{\prime}} \\
& =11.43 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{S \tan \theta_{2}}{\left(\tan \theta_{2}+\tan \theta_{1}\right)} \\
& =\frac{2 \times \tan 6^{0} 40^{\prime}}{\tan 6^{0} 40^{\prime}+\tan 3^{0} 20} \\
& =1.34 \mathrm{~m}
\end{aligned}
$$

Elevation of Staff station $\mathrm{Q}=\mathrm{RL}$ of $\mathrm{HI}-\mathrm{V}-\mathrm{h}$

$$
\begin{aligned}
& =101.520-1.34-1.0 \\
& =99.180 \mathrm{~m}
\end{aligned}
$$

