AMIRAJ

COLLEGE OF ENGINEERING \& TECHNOLOGY

Module - 6 Tacheometric Surveying

Subject:- Surveying Code:-3140601

Prepared by:
Asst.Prof. Janki Patel (Civil Department, ACET)

* Tacheomertic is the branch of the surveying in which the horizontal distance between the instrument station to the staff station and also the vertical distance of a point are determine.
*Chaining operation is completely eliminated in this method.
* Less accurate as compare to chaining.

Use of Tacheometry

- When obstacle (Step, broken ground, stretches of water)
- In rough country both horizontal and vertical measurement are tedious and chaining is inaccurate, difficult and slow.
- This method is used for find out the contour.

Purposes of Tachometry

- Prepare contour map.
- Used in hydrographic survey.
- Location survey for road, railway, reservoir etc.
- Checking of the distance which measured with the help of the tap.
- To measure the horizontal distance at which the distance measured by the tap or chain is difficult.

COLLEGE OF ENGINEERING \& TECHNOLOGY

Principle of Tacheometry

- The principle of techeometry is based on the property of isosceles triangle.
- Statement :-
- In isosceles triangle the ratio of the perpendiculars from the vertex on their bases

COLLEGE OF ENGINEERING \& TECHNOLOGY

- Here; PQR, PQ'R', PQ"R" are all
isosceles triangle whose base are QR , Q'R' and Q"R" and their vertex is at P. and here PO, PO' and PO" are the perpendicular to their respective bases.

$\frac{P O}{Q R}=\frac{P O^{\prime}}{Q^{\prime} R^{\prime}}=\frac{P O^{\prime \prime}}{Q^{\prime \prime} R^{\prime \prime}}=\operatorname{constant} K=2 \cot \frac{\alpha}{2}$
here constant $\mathrm{K}=\frac{f}{i}$
COLLEGE OF ENGINEERING \& TECHNOLOGY

Instrument used

AMIRAJ
COLLEGE OF ENGINEERING \& TECHNOLOGY

A Tacheometer

- A tacheomtry is usually transit theodolite having a stadia diaphragm.
- The diaphragm is equipped with two horizontal hairs called stadia hair in addition to regular cross hair.
- The additional hairs are equidistance from the central.
- The diaphragm commonly used in second slide.

COLLEGE OF ENGINEERING \& TECHNOLOGY

STADIA DIAPHRAGMS

Levelling Staff or Stadia Rod

- The stadia rod or staff used with tacheometry may be usual type of levelling staff having least count of 0.005 m .
- Stadia rod is usually in one piece but for easy transport it may be folding.
- Width of the staff is 5 cm to 15 cm .
- Height may be 3 m to 5 m .
- It is graduated in meter, Centimeter.
- The graduation must be simple and clear.

Methods of Tacheometry

COLLEGE OF ENGINEERING \& TECHNOLOGY

Stadia Method

- In the stadia method, a tacheometry is setup at a station P and a staff is held at another station Q.

COLLEGE OF ENGINEERING \& TECHNOLOGY

- The staff intercept (S) between the upper stadia hair and the lower stadia hair is measured.
- The vertical angle $(\boldsymbol{\theta})$ is also measured.
- The horizontal distance D between P and Q , and the difference of elevation of P and Q is calculated from the staff intercept (S) and the vertical angle $(\boldsymbol{\theta})$ by using formula.

Fixed hair method

- The upper and lower stadia hair is fixed. (stadia interval is fixed)
- The distance between the upper stadia hair and lower stadia hair, called stadia interval (i) is fixed.
- The value of the staff interval (S) varies with the distance.
- Generally stadia method means fixed hair method.

Movable hair method

- In this method the stadia hairs (i) is not fixed.
- Stadia hairs can be moved or adjusted by the micrometer screws.
- In this method the staff intercept (S) is fixed.
- The stadia interval measured corresponding to the staff intercept.

Difference

Fixed hair method

- Stadia interval (i) is fixed.
- Staff intercept (S) is not fixed.
- Fixed hair method is most commonly used to take staff reading speedy.
- Tacheometry and staff are used.

Movable hair method

- Stadia interval (i) is not fixed.
- Staff intercept (S) is fixed.
- This method is not generally used because unconvenient to measure the stadia interval accurately.
- Substance theodolite and staff are used.

Tangential Method

- In this method diaphragm of the tacheometer is not provided with the stadia hair.
- Reading are taken by the central horizontal hair.
- Staff with two targets at a fixed distance (S) is used for taking reading.
- The vertical angles $\boldsymbol{\theta}_{1} \& \boldsymbol{\theta}_{2}$ are measured.
- The vertical angle and the fixed distance (S) are used to determine the horizontal distance (D).

Difference

Stadia hair method

- Diaphragm of the tacheometer is provided with three stadia hair.
- Looking through the telescope the three stadia hair readings taken.
- One vertical angle is observed.
- This method is most commonly used in practice.

Tangential method

- Diaphragm of the tacheometer is not provided with stadia hair.
- The readings are taken by the single horizontal hair adjust upper and lower target respectively.
- Two vertical angle is observed.
- This method is not commonly used in practice

Fixed hair method

- There are main three cases for finding the distance and Elevation.
- Case : 1 When the line of sight is horizontal and staff is held Vertical.
- Case : 2 When the line of sight is inclined and staff is held Vertical. ((a) considering angle of elevation $+\theta$ (b) considering angle of depression $-\theta$)
- Case : 3 When the line of sight is inclined but staff is held normal to the line of sight.

Case : 1 When the line of sight is horizontal and staff is held Vertical.

Horizontal Distance Formula

- $\mathrm{O}=$ The optical center of the object glass.
- p,q,r = the top, axial, and bottom hair reading.
- $\mathrm{pr}=\mathrm{i}=$ Length of the image.
- $f=$ Focal length of the image glass.
- $\mathrm{S}=$ Staff in intercept on PQ.
- $\mathrm{x}=$ Horizontal distance from O to the staff.
- $x^{\prime}=$ Horizontal distance from O to the plane of the hairs.
- $d=$ Horizontal distance from O to the vertical axis of the instrument.
- $\mathrm{D}=$ Horizontal distance from axis to the staff.
- The rays Pop and Qog passing through O are the straight lines.
- Triangle POQ and pog are similar hence $\frac{x}{x^{\prime}}=\frac{s}{i}$

But x and x^{\prime} are conjugate focal length (distance)

$$
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{x}^{\prime}}+\frac{1}{\mathrm{x}}
$$

Multiplying both by fx

$$
\mathrm{x}=\frac{\mathrm{x}}{\mathrm{x}^{\prime}} \mathrm{f}+\mathrm{f}
$$

Substituting $\frac{x}{x^{\prime}}=\frac{s}{i}$

$$
\mathrm{x}=\frac{\mathrm{s}}{\mathrm{i}} \mathrm{f}+\mathrm{f}
$$

Add c on both the side

$$
\mathrm{x}+\mathrm{d}=\frac{\mathrm{s}}{\mathrm{i}} \mathrm{f}+\mathrm{f}+\mathrm{d}
$$

But $x+d=D$

$$
\mathbf{D}=\frac{\mathbf{f}}{\mathbf{i}} \mathbf{S}+(\mathbf{f}+\mathbf{d})
$$

The constant $\mathrm{K}=\frac{\mathrm{f}}{\mathrm{i}}$ is known as the multiplying constant or stadia interval factor and the constant $\mathrm{C}=\mathrm{f}+\mathrm{d}$ is known as the additive stadia of the instrument.

COLLEGE OF ENGINEERING \& TECHNOLOGY
\square Vertical Distance formula

- When the line of sight is horizontal $\mathrm{V}=0$

COLLEGE OF ENGINEERING \& TECHNOLOGY

Case : 2 When the line of sight is inclined and staff is held Vertical.

- Considering angle of elevation $+\theta$

- Let A is the instrument station
- A' is the position of the instrument axis
- P is the staff station
- DBC are the points on the staff cut by the hair of the diaphragm.
- $\angle \mathrm{CA}^{\prime} \mathrm{K}=$ is an inclined of the line of sight A'C to the horizontal
- $\mathrm{BD}=\mathrm{S}$ is the staff intercept (difference between the top and bottom hair reading) AMIRAJ

- $\mathrm{CP}=\mathrm{h}$ is the central hair or axial har readıng.
- $\mathrm{A}^{\prime} \mathrm{C}=\mathrm{L}$ is the distance along the line of collimation from A^{\prime} to C
- $\mathrm{A}^{\prime} \mathrm{K}=\mathrm{D}$ is the horizontal distance from the instrumental to the staff station P
- $\mathrm{CK}=\mathrm{V}$ is the vertical distance from the instrument axis to point C (Central hair reading)
- Draw a perpendicular line through C to the line of sight $\mathrm{A}^{\prime} \mathrm{C}$ so that it cuts A'D in D' and A'B in B' is the projection of DB perpendicular to $\mathrm{A}^{\prime} \mathrm{C}$ as shown in figure
- Line BD is perpendicular to the line $\mathrm{A}^{\prime} \mathrm{K}$ and $\mathrm{B}^{\prime} \mathrm{D}^{\prime}$ is perpendicular to $\mathrm{A}^{\text {' }} \mathrm{C}$
- $\angle \mathrm{DCD}^{\prime}=\angle \mathrm{BCB}^{\prime}=$ and $\angle \mathrm{DA}^{\prime} \mathrm{C}=\angle \mathrm{BA}^{\prime} \mathrm{C}=\beta$

- $\angle A^{\prime} D^{\prime} C=90^{\circ}-\beta$
- Angle $\angle \mathrm{DD}^{\prime} \mathrm{C}=180^{\circ}-\left(90^{0}-\beta\right)$
- $\quad=90^{\circ}+\beta$
- Angle $\angle B^{\prime}$ ' $\mathrm{C}=90^{\circ}-\beta$
- From $\Delta \mathrm{S}$ DD'C and $\mathrm{BB}^{\prime} \mathrm{C}$
- $\mathrm{D}^{\prime} \mathrm{C}=\mathrm{DC} \operatorname{Cos} \theta$
- $\mathrm{B}^{\prime} \mathrm{C}=\mathrm{BC} \operatorname{Cos} \theta$
- $\mathrm{D}^{\prime} \mathrm{C}+\mathrm{B}{ }^{\prime} \mathrm{C}=\mathrm{DC} \operatorname{Cos} \theta+\mathrm{BC} \operatorname{Cos} \theta$
- $\mathrm{D}^{\prime} \mathrm{B}^{\prime}=(\mathrm{DC}+\mathrm{BC}) \cos \theta$
- $\mathrm{D}^{\prime} \mathrm{B}^{\prime}=\mathrm{DB} \cos \theta$
- $\mathrm{D}^{\prime} \mathrm{B}^{\prime}=\mathrm{S} \operatorname{Cos} \theta$

Horizontal Distance D

Horizontal Distance $D_{\text {, When }}$ the line of sight is horizontal, then:

$$
\mathbf{D}=\frac{\mathbf{f}}{\mathbf{i}}(\mathbf{D B})+(\mathbf{f}+\mathbf{d})
$$

Here $\mathrm{DB}=\mathrm{S}$

So,

$$
\mathbf{D}=\frac{\mathbf{f}}{\mathbf{i}}(\mathbf{S})+(\mathbf{f}+\mathbf{d})
$$

Now inclined distance $A^{\prime} \mathbf{C}=\mathbf{L}=\frac{\mathbf{f}}{\mathbf{i}}\left(\mathbf{D}^{\prime} \mathbf{B}^{\prime}\right)+(\mathbf{f}+\mathbf{d})$
But here $\mathrm{D}^{\prime} \mathrm{B}^{\prime}=\mathrm{S} \operatorname{Cos} \theta$

$$
\mathbf{L}=\frac{\mathbf{f}}{\mathbf{i}}(\mathbf{S} \operatorname{Cos} \theta)+(\mathbf{f}+\mathbf{d})
$$

Horizontal distance $\mathrm{D}=\mathrm{L} \operatorname{Cos} \theta$

$$
D=L=\frac{f}{i}(S \operatorname{Cos} \theta)(\operatorname{Cos} \theta)+(f+d)(\operatorname{Cos} \theta)
$$

$$
D=\frac{f}{i} S \cos ^{2} \theta+(f+d) \cos \theta
$$

Here $\frac{\mathrm{f}}{\mathrm{i}}=\mathrm{K}$ and $(\mathrm{f}+\mathrm{d})=\mathrm{C}$
$D=\frac{f}{i} s \cos ^{2} \theta+(f+d) \cos \theta$

Vertical distance

From $\Delta \mathrm{A}^{\prime} \mathrm{CK}, \mathrm{CK}=\mathrm{V}=\mathrm{L} \operatorname{Sin} \theta$
Put the value of $L=\frac{f}{i}(S \cos \theta)+(f+d)$
$\mathrm{V}=\frac{\mathrm{f}}{\mathrm{i}}(\mathrm{S} \operatorname{Cos} \theta)(\operatorname{Sin} \theta)+(\mathrm{f}+\mathrm{d})(\operatorname{Sin} \theta)$
$V=\frac{f S \operatorname{Sin} 2 \theta}{2}+(f+d) \operatorname{Sin} \theta$
$\operatorname{Here} \frac{\mathrm{f}}{\mathrm{i}}=\mathrm{K}$ and $(\mathrm{f}+\mathrm{d})=\mathrm{C}$

So, $V=\frac{K S \operatorname{Sin} 2 \theta}{2}+(C) \operatorname{Sin} \theta$

* Elevation of the staff station for angle of elevation
- Elevation of staff station= Elevation of instrument + R.L. of B.M. + V- h

* Elevation of the staff station for the angle of depression.
- Elevation of staff station= Elevation of instrument + R.L. of B.M. - V- h
- Horizontal Distance D:

$$
D=\frac{\mathbf{f}}{\mathbf{i}} \mathbf{S} \operatorname{Cos}^{2} \theta+(\mathbf{f}+\mathbf{d}) \cos \theta
$$

- Vertical Distance V

$$
\mathbf{V}=\frac{\mathrm{KS} \operatorname{Sin} 2 \theta}{2}+(\mathbf{C}) \operatorname{Sin} \theta
$$

Case : 3 When the line of sight is inclined and staff is held normal to the line of sight.

Considering angle of Elevation $+\theta$

- Horizontal distance formula :-

$$
\mathbf{D}=\frac{\mathbf{f}}{\mathbf{i}}(\mathbf{s})+(\mathbf{f}+\mathbf{d})
$$

From the figure the Horizontal distance D :-
$\mathrm{D}=\mathrm{L} \operatorname{Cos} \theta+\mathrm{h} \operatorname{Sin} \theta$
$=(\mathrm{KS}+\mathrm{C}) \operatorname{Cos} \theta+\mathrm{h} \operatorname{Sin} \theta$
$=\mathrm{KS} \operatorname{Cos} \theta+\mathrm{C} \operatorname{Cos} \theta+\mathrm{h} \operatorname{Sin} \theta$

- Vertical distance formula :-
- Vertical distance $\mathrm{V}=\mathrm{L} \operatorname{Sin} \theta$

$$
\begin{aligned}
& =(K S+C) \operatorname{Sin} \theta \\
& =K S \operatorname{Sin} \theta+C \operatorname{Sin} \theta
\end{aligned}
$$

AMIRAJ
COLLEGE OF ENGINEERING \& TECHNOLOGY

- Elevation of the staff station :-
- Elevation of staff station= Elevation of instrument + R.L. of B.M. + V- h $\operatorname{Cos} \theta$
- Considering angle of depression - θ
- Horizontal distance formula:-
- Horizontal
distance $\mathrm{D}=\mathrm{L} \operatorname{Cos} \theta-\mathrm{h} \operatorname{Sin} \theta$

$$
\begin{aligned}
& =(\mathrm{KS}+\mathrm{C}) \operatorname{Cos} \theta-\mathrm{h} \sin \theta \\
& =\mathrm{KS} \operatorname{Cos} \theta+\mathrm{C} \operatorname{Cos} \theta-\mathrm{h} \sin \theta
\end{aligned}
$$

- Vertical distance formula :-

Vertical distance $\mathrm{V}=\mathrm{L} \operatorname{Sin} \theta$

$$
\begin{aligned}
& =(K S+C) \operatorname{Sin} \theta \\
& =K S \operatorname{Sin} \theta+C \operatorname{Sin} \theta
\end{aligned}
$$

- Elevation of the staff station :Elevation of staff station = Elevation of instrument + R.L. of B.M. - V- h $\operatorname{Cos} \theta$

Tangential method

- This method is used only when the theodolite is simple and transit type.
- This method is also used when the staff is far away from the instrument.
- In this method the staff consist of two vanes or target (S) 2 m to 3 m apart.
- The vertical angle θ_{1} and θ_{2} are measured in theodolite
- There are main three cases for finding the Distance and Elevation.
- Case : 1 Both the angle are angles of elevation in this case, staff is held vertically.
- Case : 2 Both the angle are angles of depression in this case, staff is held vertically.
- Case : 3 When the one angle is the angle of elevation and the another angle is the angle of depression and the staff held vertical.

Case : 1 Both the angle are angles of elevation in this case, staff is held vertically.

- From the fig.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}+\mathrm{S}=\mathrm{D} \tan \theta_{1} \\
\mathrm{~V}=\mathrm{D} \tan \theta_{2} \\
\mathrm{~S}
\end{array}=\mathrm{D} \tan \theta_{1}-\mathrm{V} \\
& \mathrm{~S}=\mathrm{D} \tan \theta_{1}-\mathrm{D} \tan \theta_{2} \\
& \mathrm{~S}=\mathrm{D}\left(\tan \theta_{1}-\tan \theta_{2}\right) \\
& \mathrm{D}=\frac{\mathrm{S}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)} \\
& \mathrm{V}=\frac{\mathrm{S} \tan \theta_{2}}{\left(\tan \theta_{1}-\tan \theta_{2}\right)} \\
& \text { R.L of } \mathrm{Q}=\text { R.L of } \mathrm{H} . \mathrm{I}+\mathrm{V}-\mathrm{h}
\end{aligned}
$$

Case : 2 Both the angle are angles of depression in this case, staff is held vertically.

- From the fig.
$\mathrm{V}-\mathrm{S}=\mathrm{D} \tan \theta_{1}$
$\mathrm{V}=\mathrm{D} \tan \theta_{2}$
$\mathrm{S}=\mathrm{V}-\mathrm{D} \tan \theta_{1}$
$\mathrm{S}=\mathrm{D} \tan \theta_{2}-\mathrm{D} \tan \theta_{1}$
$\mathrm{S}=\mathrm{D}\left(\tan \theta_{2}-\tan \theta_{1}\right)$
$D=\frac{S}{\left(\tan \theta_{2}-\tan \theta_{1}\right)}$
$V=\frac{S \tan \theta_{2}}{\left(\tan \theta_{2}-\tan \theta_{1}\right)}$
R.L of $\mathrm{Q}=$ R.L of H.I $-\mathrm{V}-\mathrm{h}$

Case: 3 When the one angle is the angle of elevation and the another angle is the angle of depression and the staff held vertical.

AMIRAJ

- From the fig.

$$
\begin{aligned}
& \mathrm{S}-\mathrm{V}=\mathrm{D} \tan \theta_{1} \\
& \mathrm{~V}=\mathrm{D} \tan \theta_{2} \\
& \mathrm{~S}=\mathrm{V}+\mathrm{D} \tan \theta_{1} \\
& \mathrm{~S}=\mathrm{D} \tan \theta_{2}+\mathrm{D} \tan \theta_{1} \\
& \mathrm{~S}=\mathrm{D}\left(\tan \theta_{2}+\tan \theta_{1}\right) \\
& \mathrm{D}=\frac{\mathrm{S}}{\left(\tan \theta_{2}+\tan \theta_{1}\right)} \\
& \mathrm{V}=\frac{\mathrm{S} \tan \theta_{2}}{\left(\tan \theta_{2}+\tan \theta_{1}\right)} \\
& \text { R.L of } \mathrm{Q}=\text { R.L of } \mathrm{H} . \mathrm{I}-\mathrm{V}-\mathrm{h}
\end{aligned}
$$

COLLEGE OF ENGINEERING \& TECHNOLOGY

Disadvantages of the tangential method

- Two vertical angles are measured.
- It require comparatively more time.
- This method is very tedious.

COLLEGE OF ENGINEERING \& TECHNOLOGY

