

CHAPTI	CHAPTER : COMPLEX NUMBER AND ANALYTIC FUNCTION		
	MODOLUS AND ARGUMENT OF COMPLEX NUMBER		
(1)	Find the principal value of $\arg i$. $Arg \ i = \frac{\pi}{2}$		
(2)	Find the principal value of $\arg i$. [2] Find the principal argument of $z = \frac{-2}{1+i\sqrt{3}}$.		
(3)	Determine the modulus and argument of Z^5 Where $Z = 1 + i\sqrt{3}$		
	$[\arg(z^5) = -\frac{\pi}{3}]$		
(4)	To calculate principal value of argument of following complex number a) $\sqrt{3} + i$ b) $-\sqrt{3} + i$ c) $-\sqrt{3} - i$ d) $\sqrt{3} - i$ π 5π 5π $-\pi$		
	[a) $\frac{\pi}{6}$ b) $\frac{5\pi}{6}$ c) $-\frac{5\pi}{6}$ d) $\frac{\pi}{6}$]		
(5)	[a) $\frac{\pi}{6}$ b) $\frac{5\pi}{6}$ c) $-\frac{5\pi}{6}$ d) $\frac{-\pi}{6}$] Find the value of $\operatorname{Re}(f(z))$ and $\operatorname{Im}(f(z))$ at the indicate point Where $f(z) = \frac{1}{1-z}$ at $7+2i$.		
(6)	Is $Arg(z_1, z_2) = Arg(z_1) + Arg(z_2)$? Justify.		
	SOLUTION OF QUADRATIC EQUATION		
(7)	Find the roots of the equation $z^2 + 2iz + (2-4i) = 0$ [$z = 1 + i \text{ or } z = -1 - 3i$]		
(8)	Solve the Equation of $z^2 - (5+i)z + 8 + i = 0$. [$z = 3 + 2i$ or $z = 2 - i$]		
(9)	Find the roots of the equation $z^2 - (3-i)z + (2-3i) = 0$ [$z = 2 + i \text{ or } z = 1 - 2i$]		
	De Moirve's theorem & ROOTS OF COMPLEX NUMBER		
(10)	Find and plot the square root of $4i$ [$\sqrt{4i} = \pm (\sqrt{2} + i\sqrt{2})$]		
(11)	Find and plot ail root of $\sqrt[3]{8i}$.		
(12)	Show that if c is any n^{th} root of Unity other than Unity itself, then $1+c+c^2+\ldots+c^{n-1}=0.$		
(13)	Find and plot all the roots of $(1+i)^{\frac{1}{3}}$.		
(14)	Find real and imaginary part of $(-1-i)^7 + (-1+i)^7$. [Re $al = -\sqrt{2}$ Im $g = 0$]		
	ELIMENTRY FUNCTIONS AND EXAMPLE.		
(15)	Define 1)Exponential function 2) Trigonometric function 3) Hyperbolic function 4) Logarithmic function 5)Inverse trigonometric and Inverse hyperbolic function 6)Relation between hyperbolic and trigonometric functions 7)Hyperbolic identity.		
(16)	Prove that $\tan^{-1} z = \frac{i}{2} \log \frac{i+z}{i-z}$.		
(17)	Define $\log(x+iy)$ Determine $\log(1-i)$.		
(18)	Show that $\cos(i\overline{z}) = \overline{\cos(i\overline{z})}$ for all z.		
(19)	Expand $\cosh(z_1 + z_2)$.		

(20)	
(20)	Prove that $ e^{(-2z)} < 1$ if and only if $\operatorname{Re} z > 0$.
(21)	Find all Solution of sinz=2.
(22)	Show that the set of values of $log(i^2)$ is not the same as the set of values $2logi$.
(23)	Find the principal value of $\left[\frac{e}{2}\left(-1-i\sqrt{3}\right)\right]^{3\pi i}$.
(24)	Find all root s of the Equation $\log z = \frac{\pi}{2}$.
	FUNCTION OF COMPLEX VARIABLE
(25)	Define 1) Limit of function 2)continuous function 3)Differentiable function.
(26)	Prove $\lim_{z \to 1} \frac{iz}{3} = \frac{i}{3}$ by definition.
(27)	Use the $\varepsilon - \delta$ definition of limit to Show that where $\lim_{z \to 3i} (3x + iy^2) = 9i$ Where $z = x + iy$.
(28)	Show that the limit of the function does not exist $f(z) = \begin{cases} \frac{\operatorname{Im} g(z)}{ z }, & z \neq 0\\ 0, & z = 0 \end{cases}$
(29)	Find out and (given reason) Where $f(z)$ is continuous at $z = 0$ if $f(z) = \begin{cases} \frac{\operatorname{Re}(z^2)}{ z } & , z \neq 0\\ 0 & , z = 0 \end{cases}$
(30)	Find the derivative of $\frac{z-i}{z+i}$ at <i>i</i> .
(31)	Show that $f(z) = z \operatorname{Im}(z)$ is differential only at $z = 0$ and $f'(0) = 0$.
- 0	ANALYTIC FUNCTION
(32)	Define 1)Analytic function 2)Entire function 3)C-R Equation 4)Harmonic function.
(33)	State necessary and sufficient Condition for function to be analytics and prove that necessary Condition.
(34)	The function $f(z) = \begin{cases} \frac{\overline{z}^2}{z} & , When \ z \neq 0. \\ 0 & , When \ z = 0. \end{cases}$ Satisfies C-R equation at the origin but $f'(0)$. fails to exist.
(35)	Check Whether the function is analytics or not. $f(z) = \overline{z}$.
(36)	Check Whether the function is analytics or not at any point. $f(z) = 2x + ixy^2$
(37)	Check Whether the function is analytics or not at any point. $f(z) = e^{\overline{z}}$
(38)	Verify that $f(z) = z^2$ is analytic everywhere.
(39)	Check Whether the function is analytics or not.
	$f(z) = z^{\frac{5}{2}}$

analytic find it's derivative.
$^{2}+4xy+y^{2}).$
istant in D then show that
must be constant in D in
$x \sinh y$ is harmonic
ind Conjugate harmonic.
and find a harmonic
$f(x\cos y - y\sin y)$
$s^2y - y\sin^2y$).

COLLEGE OF ENGINEERING & TECHNOLOGY

	CHAPTER: COMPLEX VARIABLE INTEGRATION			
	LINE INTEGRATION			
(1)	Evaluate $\int_{c} Re(z^2) dz$, Where c is the boundary of the square with vertices	-1 - <i>i</i>		
	$0, \mathbf{i}, 1 + \mathbf{i}, 1$ in the clockwise direction.	$-1-\iota$		
(2)	Evaluate $\int_{c} f(z) dz$, Where $f(z)$ is defined by $f(z) = \begin{cases} 1 : y < 0 \\ 4y : y > 0 \end{cases}$ & c is the arc from	2 + 3 <i>i</i>		
(3)	$z = -1 - i$ to $z = 1 + i$ along the curve $y = x^3$	8		
	Evaluate $\int_0^{4+2i} \overline{z} dz$ along the curve $z = t^2 + it$	$10 - \frac{8}{3}i$		
(4)	Evaluate $\int_c \overline{z} dz$ from $z = 1 - i$ to $z = 3 + 2i$ along the straight line.	$\frac{\frac{11}{2} + 5i}{\frac{511}{3} - \frac{49}{5}i}$		
(5)	Evaluate $\int_{c} (x^2 - iy^2) dz$, along the parabola $y = 2x^2$ from (1,2) to (2,8)	$\frac{\frac{511}{3} - \frac{49}{5}i}{i(1+i)}$		
(6)	Evaluate $\int_c (x - y + ix^2) dz$, Where c is a straight line from $z = 0$ to $z = 1 + i$	$\frac{i(1+i)}{3}$		
(7)	Evaluate $\int_c (x - y + ix^2) dz$, Where c is along the imaginary axis from $z = 0$ to $z = i$, $z = 1$ to $z = 1 + i$ & $z = 1 + i$ to $z = 0$	$\frac{3i-1}{6}$		
(8)	Evaluate $\int_{c} (x - y + ix^2) dz$, Where c is along the parabola $y^2 = x$	$-\frac{11}{30}+\frac{i}{6}$		
(9)	Evaluate $\int_c z^2 dz$, Where c is the path joining the points 1 + i and 2 + 4i along (i) the parabola $x^2 = y$ (ii) the curve $x = t$, $y = t^2$	$-\frac{86}{3}-6i$		
(10)	Evaluate $\int_{c} \text{Re}(z) dz$, Where c is a straight line from (1,1) to (3,1) & then from (3,1) to (3,2)	4 + 3 <i>i</i>		
	ML-inequality			
	-inequality: If f(z) is continuous on a contour C, then $\left \int_{C} f(z)dz\right \le ML$. where $ f(z) \le ML$	06Y -		
		$M, z \in C$ and		
	the length of the curve (contour)C.			
(11)	Find an upper bound for the absolute value of the integral $\int_c e^z dz$, where C is the line segment joining the points (0,0) and $(1,2\sqrt{2})$	3e		
(12)	Find an upper bound for the absolute value of the integral $\int_{c} \frac{dz}{z^4}$, where c is the line segment i to1, without actually evaluating the integral.	4√2		
(13)		π		
()	Find an upper bound for the absolute value of the integral $\int_c \frac{dz}{z^2+1}$, where c is the arc of a circle $ z = 2$ that lies in the first quadrant.	$\frac{\pi}{3}$		
	Cauchy's integral theorem(Cauchy Goursat's theorem)			
The	Theorem:- If $f(z)$ is an analytic function in a simply connected domain D and $f'(z)$ is continuous at each			
point within and on a simple closed curve C in D then $\oint_C f(z)dz = 0$				
(14)	State and prove Cauchy integral theorem.			
(15)	Evaluate $\oint_C (z^2 - 2z - 3) dz$, where C is the circle $ z = 2$	0		

DEPARTMENT : H & A.Sc. SEMESTER : 4 SUBJECT NAME: CVPDE SUBJECT CODE : 3140610 FACULTY NAME : PARESH PATEL

(16)	Evaluate $\oint_C \frac{z}{z-3} dz$, where C is the unit circle $ z = 1$	0	
(17)	Evaluate $\oint_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle $ z+1 = 1$	0	
	Cauchy's integral formula		
The	orem: - If $f(z)$ is an analytic within and on a simple closed curve C and z_0 is any point in	nterior to	
C,th	C, then $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$ the integration being taken counterclockwise.		
(18)	Evaluate $\oint_C \frac{dz}{z^2+1}$, where C is $ z + i = 1$, counterclockwise.	$-\pi$	
(19)	Evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $ z = 3$.	4πi	
(20)	Evaluate $\oint_C \frac{\sin 3z}{z + \frac{\pi}{2}} dz$, where C the circle is $ z = 5$.	2πi	
(21)	Evaluate $\oint_{C} \frac{e^{z}}{z(1-z)^{3}} dz$, where C is (a) $ z = \frac{1}{2}$ (b) $ z-1 = \frac{1}{2}$	2πi, —πie	
(22)	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle $ z = 3$.	8πi	
(23)	Find the value of the integral $\int_C \frac{2z^2+2}{(z-1)(z^2+9)} dz$ taken counterclockwise around the	$\frac{4}{5}\pi i$	
	circle C: $ z - 2 = 2$	5	

	CHAPTER: LAURENT'S SERIES , SINGULARITIES & RESIDUE		
	SERIES		
Rad	lius of convergence:-Let $\sum_{n=0}^\infty a_n(z-z_0)^n$ be a power series with radius of conver	gence	
R,w	here $R = \frac{\lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right $ or $R = \frac{\lim_{n \to \infty} \left a_n \right ^{\frac{-1}{n}}$		
(1)	Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (n+2i)^n z^n$	R = 0	
(2)	Discuss the convergence of $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$ and also find the radius of	<u>р</u> 1	
	convergence.	$R = \frac{1}{4}$	
(3)	Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$	$R = \infty$	
(4)	Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$	$R = \frac{1}{e}$	
	Taylor's series, Maclaurin series and Laurent's series	-	
(5)	Derive the Taylor's series representation $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}}$, where		
	$(z-i < \sqrt{2})$		
(6)	Expand $f(z) = \sin z$ in a Taylor's series about $z = \frac{\pi}{4}$.		
(7)	Develop $f(z) = \sin^2 z$ in a Maclaurin series and find the radius of convergence.		
(8)	Find the Maclaurin series representation of $f(z) = \sin z$ in the region $ z < \infty$		
(9)	Show that when $o < z-1 < 2$, $\frac{z}{(z-1)(z-3)} = \frac{-1}{2(z-1)} - 3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}}$		
(10)	Find the series of $f(z) = \frac{z}{(z-1)(z-4)}$ in terms of $(z + 3)$ valid for $ z + 3 < 4$		
(11)	Expand $f(z) = \frac{1}{(z+2)(z+4)}$ valid for the region (i) $ z < 2$ (ii) $2 < z < 4$		
(12)	(iii) $ z > 4$ Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series in the interval $1 < z < 3$	0GY -	
(13)	Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region $1 < z+1 < 3$		
(14)			
(15)	Write the two Laurent series expansion in powers of z that represent the		
	function $f(z) = \frac{1}{z^2(1-z)}$ in certain domains, and also specify domains.		
(16)	Expand $f(z) = \frac{1-e^z}{z}$ in Laurent's series about $z = 0$ and identify the singularity.		
	Singularities, poles and residue		
(17)	Definition :		
	(i)Singular point:-A point z_0 is a singular point if a function $f(z)$ is not analytic		
	at z_0 but is analytic at some points of each neighbourhood of z_0 . (ii) is called point: A singular point z_0 of $f(z)$ is said to be isolated point if		
	<u>(ii)Isolated point:</u> A singular point z_0 of $f(z)$ is said to be isolated point if there is a neighbourhood of z_0 which contains no singular points of $f(z)$		
	except z_0 .i.e. $f(z)$ is analytic in some deleted neighbourhood, $0 < z - z_0 < \varepsilon$.		
	For example: - $f(z) = \frac{z^2+1}{(z-1)(z-2)}$ has two isolated point $z = 1 \& z = 2$.		
	$\underbrace{(iii)Poles:-}_{(z-1)(z-2)}$ It is two isolated point $z = 1 \ a \ z = 2.$		
	<u>(III) FOICS</u> IT PETICIPAL PALE OF LAUFERTES SELIES HAS HEITE HUMBER OF LEFTINS, I.E.,		

SEMESTER : 4

	$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_n}{(z - z_0)^n}$, then the singularity	
	$z = z_0$ is said to be pole of order <i>n</i> .	
	If $b_1 \neq 0$ and $b_2 = b_3 = \dots = b_n = 0$, then $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0}$ the	
	singularity $z = z_0$ is said to be pole of order 1 or a simple pole.	
	(iv) Types of singularities:-	
	(a) Removable singularity:-If in the Laurent's series expansion, the principal next is given by $\sum_{i=1}^{\infty} (1 - i)^{i}$.	
	part is zero; i.e., $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + 0$ then the singularity $z = z_0$ is said	
	to be removable singularity. (i.e., $f(z)$ is not defined at $z = z_0$ but $\lim_{z \to 0} f(z)$	
	exists.) For every $f(z) = \frac{\sin z}{\sin z}$ is undefined at $z = 0$ but $\lim_{z \to 0} \frac{\sin z}{2} = 1$ or $z = 0$ is a	
	For example: $-f(z) = \frac{\sin z}{z}$ is undefined at $z = 0$ but $\frac{\lim z}{z \to 0} \frac{\sin z}{z} = 1.$ so, $z = 0$ is a	
	removable singularity. (b)Essential singularity:-If in the Laurent's series expansion, the principal part	
	contains an infinite number of terms, then the singularity $z = z_0$ is said to be an essential singularity.	
	For example: - $f(z) = \sin \frac{1}{z}$ has an essential singularity at $z = 0$, since	
	$\sin \frac{1}{z} = \frac{1}{z} - \frac{1}{2 z^3} + \frac{1}{5 z^5} + \cdots$	
	z z z z z z z z z z	
	coefficient b_1 of the term $(z - z_0)^{-1}$ in the Laurent's series expansion of $f(z)$ at	
	$z = z_0$ is called the residue of $f(z)$ at $z = z_0$. Residue of $f(z)$ at $z = z_0$ is denoted	
	by $\sum_{z=z_0}^{Res} f(z)$.	
(18)	Classify the poles of $f(z) = \frac{1}{z^{2-}z^{6}}$	
(19)	Define residue at simple pole and find the sum of residues of the function	
	$f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle $ z = 2$.	DGY -
(20)	Find the residue at $z = 0$ of $(z) = z \cos \frac{1}{z}$.	
(21)	Show that the singular point of the function $f(z) = \frac{1-\cosh z}{z^3}$ is a pole. Determine	
	the order m of that pole and corresponding residue.	
(22)	Find the residue at $z = 0$ of $(z) = \frac{1-e^z}{z^3}$.	
	Cauchy Residue Theorem and Application of Residues	
Cau	chy's residue theorem: -If $f(z)$ is analytic in a closed curve C except at a finite	
num	nber of singular points within C,then	
$\int_{C} f$	$f(z) dz = 2\pi i (sum of the residue at the singular points)$	
(23)	Using residue theorem, evaluate $\oint_C \frac{z^2 \sin z}{4z^2 - 1} dz$, $C: z = 2$.	$\frac{\pi i}{4}\sin\frac{1}{2}$
(24)	State Cauchy's residue theorem and evaluate $\int_C \frac{5z-2}{z(z-1)} dz$, where C is the circle	10πi
	z = 2	10/11
(25)	Evaluate $\int_{C} \frac{dz}{(z^2+1)^2}$, where $C: z + i = 1$	$\frac{\pi}{2}$
(26)	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and residue at each pole.	2πi
· · · · · ·		

SEIV	IEST	ER :	: 4
------	------	------	-----

	Hence evaluate $\int_{C} f(z) dz$ where C is the circle $ z = 3$.		
(27)	Evaluate $\oint_C \frac{dz}{\sinh 2z}$, where $C: z = 2$	$-\pi i$	
(28)	Use residues to evaluate the integrals of the function $\frac{\exp(-z)}{z^2}$ around the circle	$-\pi i$	
	z = 3 in the positive sense.	-111	
(29)	Find the value of the integral $\int_{C} \frac{2z^2+2}{(z-1)(z^2+9)} dz$ taken counterclockwise around	$\frac{4}{5}\pi i$	
	the circle $C: z-2 = 2$	5	
(30)	Using the residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$	$\frac{\frac{3\pi}{2}}{2\pi}$	
(31)	Using the residue theorem, evaluate $\int_0^{2\pi} \frac{4 d\theta}{5+4 \sin \theta}$	$\frac{2\pi}{3}$	
(32)	Evaluate $\int_0^{2\pi} \frac{d\theta}{3-2\cos\theta+\sin\theta}$.		
(33)	Evaluate $\int_0^{\pi} \frac{d\theta}{17-8\cos\theta}$, by integrating around a unit circle.	$\frac{\pi}{15}$	
(34)	Use residues to evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+4)}$	$\frac{\pi}{6}$	
(35)	Let $a > b > 0$. Prove that $\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right)$		
	Rouche's Theorem		
Theorem : If $f(z)$ and $g(z)$ are analytic inside and on a simple closed curve <i>C</i> and if $ g(z) < f(z) $ on <i>C</i> , then $f(z) + g(z)$ and $f(z)$ have the same number of zeros inside <i>C</i> .			
(36)	Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles $ z = 1$ and		
	z = 2 using Rouche's theorem.		
(37)	(37) Use Rouche's theorem to determine the number of zeros of the polynomial		
$z^6 - 5z^4 + z^3 - 2z$ inside the circle $ z = 1$.			
LI	CULLEGE OF ENGINEERING & TECHNOO	UGY	