| CHAPTER : COMPLEX NUMBER AND ANALYTIC FUNCTION |  |
| :---: | :---: |
|  | MODOLUS AND ARGUMENT OF COMPLEX NUMBER |
| (1) | Find the principal value of $\arg i . \quad\left[\operatorname{Arg} i=\frac{\pi}{2}\right.$ ] |
| (2) | Find the principal argument of $z=\frac{-2}{1+i \sqrt{3}}$. |
| (3) | Determine the modulus and argument of $Z^{5}$ Where $Z=1+i \sqrt{3}$ $\left[\arg \left(z^{5}\right)=-\frac{\pi}{3}\right]$ |
| (4) | To calculate principal value of argument of following complex number <br> a) $\sqrt{3}+i$ <br> b) $-\sqrt{3}+i$ <br> c) $-\sqrt{3}-i$ <br> d) $\sqrt{3}-i$ <br> (a) $\frac{\pi}{6}$ <br> b) $\frac{5 \pi}{6}$ <br> c) $-\frac{5 \pi}{6}$ d) $\frac{-\pi}{6}$ ] |
| (5) | Find the value of $\operatorname{Re}(f(z))$ and $\operatorname{Im}(f(z))$ at the indicate point Where $f(z)=\frac{1}{1-z}$ at $7+2 i$. |
| (6) | Is $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) ?$ Justify. |
|  | SOLUTION OF QUADRATIC EQUATION |
| (7) | Find the roots of the equation $z^{2}+2 i z+(2-4 i)=0$ $[z=1+i \text { or } z=-1-3 i]$ |
| (8) | Solve the Equation of $z^{2}-(5+i) z+8+i=0 .\left[\begin{array}{ll}z=3+2 i & \text { or } z=2-i]\end{array}\right.$ |
| (9) | Find the roots of the equation $z^{2}-(3-i) z+(2-3 i)=0$ $[z=2+i$ or $z=1-2 i]$ |
|  | De Moirve's theorem \& ROOTS OF COMPLEX NUMBER |
| (10) | Find and plot the square root of $4 i F F \square \\| \quad[\sqrt{4 i}= \pm(\sqrt{2}+i \sqrt{2})]$ |
| (11) | Find and plot aii root of $\sqrt[3]{8 i}$. |
| (12) | Show that if $c$ is any $n^{\text {th }}$ root of Unity other than Unity itself , then $1+c+c^{2}+\ldots \ldots . .+c^{n-1}=0$. |
| (13) | Find and plot all the roots of $(1+i)^{1 / 3}$. |
| (14) | Find real and imaginary part of $(-1-i)^{7}+(-1+i)^{7} .[\operatorname{Re} a l=-\sqrt{2} \quad \operatorname{Im} g=0]$ |
|  | ELIMENTRY FUNCTIONS AND EXAMPIE. |
| (15) | Define <br> 1) Exponential function 2) Trigonometric function 3) Hyperbolic function <br> 4) Logarithmic function 5)Inverse trigonometric and Inverse hyperbolic function 6)Relation between hyperbolic and trigonometric functions 7)Hyperbolic identity. |
| (16) | Prove that $\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}$. |
| (17) | Define $\log (x+i y)$ Determine $\log (1-i)$. |
| (18) | Show that $\cos (i \bar{z})=\overline{\cos (i \bar{z})}$ for all z . |
| (19) | Expand $\cosh \left(z_{1}+z_{2}\right)$. |

DEPARTMENT : H\& A.Sc.
SEMESTER :4

| (20) | Prove that $\left\|e^{(-2 z)}\right\|<1$ if and only if $\operatorname{Re} z>0$. |
| :---: | :---: |
| (21) | Find all Solution of sinz=2. |
| (22) | Show that the set of values of $\log \left(i^{2}\right)$ is not the same as the set of values $2 \log i$. |
| (23) | Find the principal value of $\left[\frac{e}{2}(-1-i \sqrt{3})\right]^{3 \pi i}$. |
| (24) | Find all root s of the Equation $\log z=\frac{\pi}{2}$. |
|  | FUNCTION OF COMPLEX VARIABLE |
| (25) | Define 1) Limit of function 2)continuous function 3)Differentiable function. |
| (26) | Prove $\lim _{z \rightarrow 1} \frac{i z}{3}=\frac{i}{3}$ by definition. |
| (27) | Use the $\varepsilon-\delta$ definition of limit to Show that where $\lim _{z \rightarrow 3 i}\left(3 x+i y^{2}\right)=9 i$ Where $z=x+i y$. |
| (28) | Show that the limit of the function does not exist $f(z)= \begin{cases}\frac{\operatorname{Im} g(z)}{\|z\|} & , z \neq 0 \\ 0 & , z=0\end{cases}$ |
| (29) | Find out and (given reason) Where $f(z)$ is continuous at $z=0$ if $f(z)= \begin{cases}\frac{\operatorname{Re}\left(z^{2}\right)}{\|z\|} & , z \neq 0 \\ 0 & , z=0\end{cases}$ |
| (30) | Find the derivative of $\frac{z-i}{z+i}$ at $i$. |
| (31) | Show that $f(z)=z \operatorname{Im}(z)$ is differential only at $z=0$ and $f^{\prime}(0)=0$. |
|  |  |
| (32) | Define 1) Analytic function 2)Entire function 3)C-R Equation 4)Harmonic function. |
| (33) | State necessary and sufficient Condition for function to be analytics and prove that necessary Condition. |
| (34) | The function $f(z)=\left\{\begin{array}{ll}\frac{z^{2}}{z} & , \text { When } z \neq 0 . \\ 0 & , \text { When } z=0 .\end{array}\right.$ Satisfies C-R equation at the origin but $f^{\prime}(0)$. fails to exist. |
| (35) | Check Whether the function is analytics or not. $f(z)=\bar{z} .$ |
| (36) | Check Whether the function is analytics or not at any point. $f(z)=2 x+i x y^{2}$ |
| (37) | Check Whether the function is analytics or not at any point. $f(z)=e^{\bar{z}}$ |
| (38) | Verify that $f(z)=z^{2}$ is analytic everywhere. |
| (39) | Check Whether the function is analytics or not. $f(z)=z^{\frac{5}{2}}$ |


| $(40)$ | Check Whether the function $f(z)=\sin z$ is analytics or not. if analytic find it's derivative. |
| :--- | :--- |
| $(41)$ | Find the all analytic function $f(z)=u+i v$ if $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$. |
| $(42)$ | Show that if $f(z)$ is analytics in a domain $D$ and $\|f(z)\|=k$ constant in $D$ then show that <br> $f(z)=$ const in $D$. |
| $(43)$ | Let a function $f(z)$ be analytic in a domain $D$ prove that $f(z)$ must be constant in $D$ in <br> each of following cases. <br> a) if $f(z)$ is real value for all $z$ in $D$ <br> b) if $\overline{f(z) \text { is analytic in } D .}$ |
| $(44)$ | Define harmonic function. Show that $u=x \sin x \cosh y-y \cos x \sinh y$ is harmonic |
| $(45)$ | Determine 'a' and 'b' such that $u=a x^{3}+b x y$ is harmonic and find Conjugate harmonic. |
| $(46)$ | Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic in some domain and find a harmonic <br> Conjugate $v(x, y)$. |
| $(47)$ | Determine the analytic function whose imaginary part is $e^{x}(x \cos y-y \sin y)$. |
| $(48)$ | Determine the analytic function whose real part is $e^{2 x}(x \cos 2 y-y \sin 2 y)$. |



COLLEGE DF

DEPARTMENT : H \& A.Sc.
SEMESTER : 4
SUBJECT NAME: CVPDE
SUBJECT CODE : 3140610
FACULTY NAME : PARESH PATEL

| CHAPTER:COMPLEX VARIABLE INTEGRATION |  |  |
| :---: | :---: | :---: |
|  | LINE INTEGRATION |  |
| (1) | Evaluate $\int_{\boldsymbol{c}} \boldsymbol{\operatorname { R e }}\left(\mathbf{z}^{2}\right) \boldsymbol{d z}$, Where c is the boundary of the square with vertices $\mathbf{0}, \boldsymbol{i}, \mathbf{1}+\boldsymbol{i}, \mathbf{1}$ in the clockwise direction. | $-1-i$ |
| (2) | Evaluate $\int_{c} f(z) d z$,Where $f(z)$ is defined by $f(z)=\left\{\begin{array}{l}1 ; y<0 \\ 4 y ; y>0\end{array} \& c\right.$ is the arc from $\mathrm{z}=-1-\mathrm{i}$ to $\mathrm{z}=1+\mathrm{i}$ along the curve $\mathrm{y}=\mathrm{x}^{3}$ | $2+3 i$ |
| (3) | Evaluate $\int_{0}^{4+2 \mathrm{i}} \overline{\mathrm{z}} \mathrm{dz}$ along the curve $\mathrm{z}=\mathrm{t}^{2}+\mathrm{it}$ | $10-\frac{8}{3} i$ |
| (4) | Evaluate $\int_{c} \overline{\mathrm{z}}$ dz from $\mathrm{z}=1-\mathrm{i}$ to $\mathrm{z}=3+2 \mathrm{i}$ along the straight line. | $\frac{11}{2}+5 i$ |
| (5) | Evaluate $\int_{\text {c }}\left(\mathrm{x}^{2}-\mathrm{iy}{ }^{2}\right) \mathrm{dz}$, along the parabola $\mathrm{y}=2 \mathrm{x}^{2}$ from $(1,2)$ to $(2,8)$ | $\frac{511}{3}-\frac{49}{5} i$ |
| (6) | Evaluate $\int_{c}\left(\mathrm{x}-\mathrm{y}+\mathrm{ix} \mathrm{x}^{2} \mathrm{dz}\right.$, Where c is a straight line from $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$ | $\frac{i(1+i)}{3}$ |
| (7) | Evaluate $\int_{c}\left(x-y+i x^{2}\right) d z$, Where $c$ is along the imaginary axis from $z=0$ to $z=$ $\mathrm{i}, \mathrm{z}=1$ to $\mathrm{z}=1+\mathrm{i} \& \mathrm{z}=1+\mathrm{i}$ to $\mathrm{z}=0$ | $\frac{3 i-1}{6}$ |
| (8) | Evaluate $\int_{c}\left(x-y+i x^{2}\right) d z$, Where $c$ is along the parabola $y^{2}=x$ | $-\frac{11}{30}+\frac{i}{6}$ |
| (9) | Evaluate $\int_{c} z^{2} d z$, Where $c$ is the path joining the points $1+i$ and $2+4 i$ along (i) the parabola $\mathrm{x}^{2}=\mathrm{y}$ (ii) the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ | $-\frac{86}{3}-6 i$ |
| (10) | Evaluate $\int_{c} \operatorname{Re}(\mathrm{z}) \mathrm{dz}$, Where c is a straight line from ( 1,1 ) to $(3,1)$ \& then from $(3,1)$ to $(3,2)$ | $4+3 i$ |
| ML-inequality <br> ML-inequality: If $f(z)$ is continuous on a contour $C$, then $\left\|\int_{C} f(z) d z\right\| \leq M L$. where $\|f(z)\| \leq M, z \in C$ and Lis the length of the curve (contour)C. |  |  |
| (11) | Find an upper bound for the absolute value of the integral $\int_{c} e^{z} d z$, where $c$ is the line segment joining the points $(0,0)$ and $(1,2 \sqrt{2})$ | $3 e$ |
| (12) | Find an upper bound for the absolute value of the integral $\int_{c} \frac{d z}{z^{4}}$, where $c$ is the line segment i to1, without actually evaluating the integral. | $4 \sqrt{2}$ |
| (13) | Find an upper bound for the absolute value of the integral $\int_{c} \frac{d z}{z^{2}+1}$, where $c$ is the arc of a circle $\|\mathrm{z}\|=2$ that lies in the first quadrant. | $\frac{\pi}{3}$ |
| Cauchy's integral theorem(Cauchy Goursat's theorem) |  |  |
| Theorem:- If $f(z)$ is an analytic function in a simply connected domain $D$ and $f^{\prime}(z)$ is continuous at each point within and on a simple closed curve $C$ in $D$ then $\oint_{C} f(z) d z=0$ |  |  |
| (14) | State and prove Cauchy integral theorem. |  |
| (15) | Evaluate $\oint_{C}\left(z^{2}-2 z-3\right) d z$, where $C$ is the circle $\|z\|=2$ | 0 |

COLLEGE OF ENGINEERING \& TECHNOLOGY

| (16) | Evaluate $\oint_{\mathrm{C}} \frac{\mathrm{z}}{\mathrm{z}-3} \mathrm{dz}$, where C is the unit circle $\|\mathrm{z}\|=1$ | 0 |
| :---: | :---: | :---: |
| (17) | Evaluate $\oint_{C} \frac{z+4}{z^{2}+2 z+5} d z$, where $C$ is the circle $\|z+1\|=1$ | 0 |
| Cauchy's integral formula |  |  |
| Theorem: - If $\mathrm{f}(\mathrm{z})$ is an analytic within and on a simple closed curve C and $\mathrm{z}_{0}$ is any point interior to C,then $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$ the integration being taken counterclockwise. |  |  |
| (18) | Evaluate $\oint_{C} \frac{\mathrm{dz}}{\mathrm{z}^{2}+1}$, where C is $\mathrm{Iz}+\mathrm{il}=1$, counterclockwise. | $-\pi$ |
| (19) | Evaluate $\oint_{C} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z$, where $C$ is the circle $\|z\|=3$. | $4 \pi i$ |
| (20) | Evaluate $\oint_{C} \frac{\sin 3 \mathrm{z}}{\mathrm{z}+\frac{\pi}{2}} \mathrm{dz}$, where C the circle is $\|\mathrm{z}\|=5$. | $2 \pi i$ |
| (21) | Evaluate $\oint_{C} \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}(1-\mathrm{z})^{3}} \mathrm{dz}$, where C is (a)\| $\left.\mathrm{z}\left\|=\frac{1}{2}(\mathrm{~b})\right\| \mathrm{z}-1 \right\rvert\,=\frac{1}{2}$ | $2 \pi i,-\pi i e$ |
| (22) | Evaluate $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$, where $C$ is the circle $\|z\|=3$. | $8 \pi i$ |
| (23) | Find the value of the integral $\int_{C} \frac{2 z^{2}+2}{(z-1)\left(z^{2}+9\right)} d z$ taken counterclockwise around the circle $\mathrm{C}:\|\mathrm{z}-2\|=2$ | $\frac{4}{5} \pi i$ |



DEPARTMENT: H\& A.Sc.
SEMESTER : 4
SUBJECT NAM E: CVPDE
SUBJECT CODE : 3140610
FACULTY NAM E : PARESH PATEL

| CHAPTER: LAURENT'S SERIES , SINGULARITIES \& RESIDUE |  |  |
| :---: | :---: | :---: |
| SERIES |  |  |
| Radius of convergence:-Let $\sum_{\boldsymbol{n}=0}^{\infty} \boldsymbol{a}_{\boldsymbol{n}}\left(\mathbf{z - z _ { 0 }}\right)^{\boldsymbol{n}}$ be a power series with radius of convergence $R$, where $\boldsymbol{R}=\lim _{n \rightarrow \infty}\left\|\frac{a_{n}}{a_{n+1}}\right\|$ or $\boldsymbol{R}=\lim _{n \rightarrow \infty}\left\|\boldsymbol{a}_{\boldsymbol{n}}\right\|^{\frac{-1}{n}}$ |  |  |
| (1) | Find the radius of convergence of the power series $\sum_{n=0}^{\infty}(\boldsymbol{n}+\mathbf{2 i})^{\boldsymbol{n}} \mathbf{z}^{n}$ | $R=0$ |
| (2) | Discuss the convergence of $\sum_{\boldsymbol{n}=\mathbf{0}}^{\infty} \frac{(2 \boldsymbol{n})!}{(\boldsymbol{n}!)^{2}}(\mathbf{z}-\mathbf{3 i})^{\boldsymbol{n}}$ and also find the radius of convergence. | $R=\frac{1}{4}$ |
| (3) | Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}$ | $R=\infty$ |
| (4) | Find the radius of convergence of the power series $\sum_{n=1}^{\infty}\left(\mathbf{1}+\frac{1}{n}\right)^{n^{2}} z^{n}$ | $R=\frac{1}{e}$ |
| Taylor's series, Maclaurin series and Laurent's series |  |  |
| (5) | Derive the Taylor's series representation $\frac{\mathbf{1}}{1-z}=\sum_{n=0}^{\infty} \frac{(z-i)^{n}}{(1-i)^{n+1}}$, where $(\|z-i\|<\sqrt{2})$ |  |
| (6) | Expand $f(z)=\sin z$ in a Taylor's series about $z=\frac{\pi}{4}$. |  |
| (7) | Develop $\boldsymbol{f}(\mathbf{z})=\boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{z}$ in a Maclaurin series and find the radius of convergence. |  |
| (8) | Find the Maclaurin series representation of $\boldsymbol{f}(\mathbf{z})=\boldsymbol{\operatorname { s i n }} \mathbf{z}$ in the region $\|\boldsymbol{z}\|<\infty$ |  |
| (9) | Show that when $\boldsymbol{o}<\|z-1\|<2, \frac{z}{(z-1)(z-3)}=\frac{-1}{2(z-1)}-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}$ |  |
| (10) | Find the series of $\boldsymbol{f}(\mathbf{z})=\frac{\mathbf{z}}{(\boldsymbol{z - 1})(\mathbf{z - 4 )}}$ in terms of $(\mathbf{z}+3)$ valid for $\|\boldsymbol{z}+3\|<4$ |  |
| (11) | Expand $\boldsymbol{f}(\boldsymbol{z})=\frac{\mathbf{1}}{(\boldsymbol{z}+2)(\boldsymbol{z}+4)}$ valid for the region (i)\| $\mathbf{z} \mid<2$ (ii) $\mathbf{2}<\|\mathbf{z}\|<4$ (iii) $\|z\|>4$ |  |
| (12) | Expand $\boldsymbol{f}(\mathbf{z})=\frac{\mathbf{1}}{(\boldsymbol{z}+\mathbf{1})(\boldsymbol{z}+\mathbf{3})}$ in Laurent's series in the interval $\mathbf{1}<\|\mathbf{z}\|<3$ |  |
| (13) | Find the Laurent's expansion of $\boldsymbol{f}(\mathbf{z})=\frac{7 \mathbf{z - 2}}{(\mathbf{z}+\mathbf{1} \mathbf{z} \mathbf{z} \mathbf{- 2})}$ in the region $\mathbf{1}<\|\mathbf{z}+\mathbf{1}\|<3$ |  |
| (14) | Expand $\boldsymbol{f}(\mathbf{z})=-\frac{\mathbf{1}}{(\boldsymbol{z} \mathbf{1}(\mathbf{z}-\mathbf{2})}$ in the region (i) $\|\boldsymbol{z}\|<1$ (ii) $\mathbf{1}<\|\boldsymbol{z}\|<2$ (iii) $\mathbf{z} \mid>2$ |  |
| (15) | Write the two Laurent series expansion in powers of $z$ that represent the function $\boldsymbol{f}(\boldsymbol{z})=\frac{1}{\boldsymbol{z}^{2}(\mathbf{1 - z})}$ in certain domains, and also specify domains. |  |
| (16) | Expand $\boldsymbol{f}(\boldsymbol{z})=\frac{1-e^{\boldsymbol{z}}}{\boldsymbol{z}}$ in Laurent's series about $\mathbf{z}=\mathbf{0}$ and identify the singularity. |  |
|  | Singularities, poles and residue |  |
| (17) | Definition : <br> (i)Singular point:-A point $z_{0}$ is a singular point if a function $f(z)$ is not analytic at $z_{0}$ but is analytic at some points of each neighbourhood of $z_{0}$. <br> (ii)Isolated point:-A singular point $z_{0}$ of $f(z)$ is said to be isolated point if there is a neighbourhood of $z_{0}$ which contains no singular points of $f(z)$ except $z_{0}$.i.e. $f(z)$ is analytic in some deleted neighbourhood, $0<\left\|z-z_{0}\right\|<\varepsilon$. <br> For example: $-f(z)=\frac{z^{2}+1}{(z-1)(z-2)}$ has two isolated point $z=1 \& z=2$. <br> (iii)Poles:-If principal part of Laurent's series has finite number of terms, i.e., |  |


|  | $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots \ldots+\frac{b_{n}}{\left(z-z_{0}\right)^{n}}$, then the singularity $z=z_{0}$ is said to be pole of order $n$. <br> If $b_{1} \neq 0$ and $b_{2}=b_{3}=\cdots \ldots=b_{n}=0$, then $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}$ the singularity $z=z_{0}$ is said to be pole of order 1 or a simple pole. <br> (iv)Types of singularities:- <br> (a)Removable singularity:-If in the Laurent's series expansion, the principal part is zero; i.e. $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+0$ then the singularity $z=z_{0}$ is said to be removable singularity. (i.e., $f(z)$ is not defined at $z=z_{0}$ but $\lim _{z \rightarrow 0} f(z)$ exists.) <br> For example: $-f(z)=\frac{\sin z}{z}$ is undefined at $z=0$ but $\lim _{z \rightarrow 0} \frac{\sin z}{z}=1.50, z=0$ is a removable singularity. <br> (b)Essential singularity:-If in the Laurent's series expansion, the principal part contains an infinite number of terms, then the singularity $z=z_{0}$ is said to be an essential singularity. <br> For example: $-f(z)=\sin \frac{1}{z}$ has an essential singularity at $z=0$,since $\sin \frac{1}{z}=\frac{1}{z}-\frac{1}{3: z^{3}}+\frac{1}{5: z^{5}}+\cdots \ldots$ <br> (v)Residue of a function:- If $f(z)$ has a pole at the point $z=z_{0}$ then the coefficient $b_{1}$ of the term $\left(z-z_{0}\right)^{-1}$ in the Laurent's series expansion of $f(z)$ at $z=z_{0}$ is called the residue of $f(z)$ at $z=z_{0}$. Residue of $f(z)$ at $z=z_{0}$ is denoted by ${ }_{z=z_{0}}^{\text {Res }} f(z)$. |  |
| :---: | :---: | :---: |
| (18) | Classify the poles of $f(z)=\frac{1}{z^{2-} z^{6}}$ |  |
| (19) | Define residue at simple pole and find the sum of residues of the function $\boldsymbol{f}(\boldsymbol{z})=\frac{\sin z}{z \cos z}$ at its poles inside the circle $\|\boldsymbol{z}\|=\mathbf{2}$. |  |
| (20) | Find the residue at $z=0$ of $(\mathbf{z})=\mathbf{z} \boldsymbol{\operatorname { c o s }} \frac{1}{z}$. |  |
| (21) | Show that the singular point of the function $\boldsymbol{f}(\boldsymbol{z})=\frac{1-\cosh \boldsymbol{z}}{z^{3}}$ is a pole. Determine the order $m$ of that pole and corresponding residue. |  |
| (22) | Find the residue at $z=0$ of $(\boldsymbol{z})=\frac{\mathbf{1 - e ^ { z }}}{\mathbf{z}^{3}}$. |  |
|  | Cauchy Residue Theorem and Application of Residues |  |
|  | chy's residue theorem:-If $f(z)$ is analytic in a closed curve $C$ except at a finite mber of singular points within $C$,then <br> $f(z) d z=2 \pi i($ sum of the residue at the singular points) |  |
| (23) | Using residue theorem, evaluate $\oint_{C} \frac{z^{2} \sin z}{4 z^{2}-1} \boldsymbol{d z}, \boldsymbol{C}:\|\boldsymbol{z}\|=\mathbf{2}$. | $\frac{\pi i}{4} \sin \frac{1}{2}$ |
| (24) | State Cauchy's residue theorem and evaluate $\int_{C} \frac{5 z-2}{\mathbf{z}(\mathbf{z}-\mathbf{1})} \boldsymbol{d z}$, where $C$ is the circle $\|z\|=2$ | $10 \pi i$ |
| (25) | Evaluate $\int_{C} \frac{d z}{\left(z^{2}+1\right)^{2}}$, where $C:\|z+i\|=1$ | $\frac{\pi}{2}$ |
| (26) | Determine the poles of the function $\boldsymbol{f}(\mathbf{z})=\frac{z^{2}}{(z-1)^{2}(\mathbf{z}+2)}$ and residue at each pole. | $2 \pi i$ |

COLLEGE OF ENGINEERING \& TECHNOLOGY

|  | Hence evaluate $\int_{C} \boldsymbol{f}(\boldsymbol{z}) \boldsymbol{d z}$ where $C$ is the circle $\|\boldsymbol{z}\|=\mathbf{3}$. |  |
| :---: | :---: | :---: |
| (27) | Evaluate $\oint_{C} \frac{d z}{\sinh 2 z}$, where $C:\|z\|=2$ | $-\pi i$ |
| (28) | Use residues to evaluate the integrals of the function $\frac{\exp (-z)}{z^{2}}$ around the circle $\|z\|=3$ in the positive sense. | $-\pi i$ |
| (29) | Find the value of the integral $\int_{C} \frac{2 z^{2}+2}{(z-1)\left(\mathbf{z}^{2}+9\right)} d z$ taken counterclockwise around the circle $\boldsymbol{C}:\|\mathbf{z}-\mathbf{2}\|=\mathbf{2}$ | ${ }_{5}^{4} \pi i$ |
| (30) | Using the residue theorem, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$ | $\frac{3 \pi}{2}$ |
| (31) | Using the residue theorem, evaluate $\int_{0}^{2 \pi} \frac{4 d \theta}{5+4 \sin \theta}$ | $\frac{2 \pi}{3}$ |
| (32) | Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta+\sin \theta}$. |  |
| (33) | Evaluate $\int_{0}^{\pi} \frac{d \theta}{17-\mathbf{8} \boldsymbol{\operatorname { c o s } \theta}}$, by integrating around a unit circle. | $\frac{\pi}{15}$ |
| (34) | Use residues to evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ | $\frac{\pi}{6}$ |
| (35) | Let $a>b>0$.Prove that $\int_{-\infty}^{\infty} \frac{\boldsymbol{c o s} x d x}{\left(\boldsymbol{x}^{2}+\boldsymbol{a}^{2}\right)\left(\boldsymbol{x}^{2}+b^{2}\right)}=\frac{\pi}{\boldsymbol{a}^{2}-\boldsymbol{b}^{2}}\left(\frac{e^{-b}}{\boldsymbol{b}}-\frac{e^{-a}}{\boldsymbol{a}}\right)$ |  |
| Rouche's Theorem |  |  |
| Theorem: If $f(z)$ and $g(z)$ are analytic inside and on a simple closed curve $C$ and if $\|g(z)\|<\|f(z)\|$ on $C$, then $f(z)+g(z)$ and $f(z)$ have the same number of zeros inside $C$. |  |  |
| (36) | Prove that all the roots of $\boldsymbol{z}^{7}-5 z^{3}+\mathbf{1 2}=\mathbf{0}$ lie between the circles $\|\boldsymbol{z}\|=\mathbf{1}$ and $\|\boldsymbol{z}\|=2$ using Rouche's theorem. |  |
| (37) | Use Rouche's theorem to determine the number of zeros of the polynomial $z^{6}-5 z^{4}+z^{3}-\mathbf{2 z}$ inside the circle $\|z\|=\mathbf{1}$. |  |

