
Prepared by:

Asst.Prof.Foram Patel

(Computer Department,ACET)

CHAPTER -2

PROCESS MANAGEMENT

Subject:- OS

Code:-3140702

WHAT IS PROCESS

• Process is a Execution of program.

• Process is an active entity that requires a set of resource, including

a processor, program counter , register to perform its function.

• Process execution perform in sequential order.

• Each process has its own address space.

• Address space divided into different region. 1) Text region 2) Data

region 3) stack region

• A process can run to completion only when all requested hardware

and software resources have been allocated to the process.

WHAT IS PROCESS

MANAGEMENT

• The operating system is responsible for the following activities in

connection with process management:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

PROCESS STATES

• The process state is an indicator of the nature of the current activity in

a process.

• The notion of process state is introduced to simplify control of process

by the operating system.

PROCESS STATE TRANSITION

• Ready  Running

• The process is dispatch able .

• Blocked Ready

• The process is pre-empted because the OS decides to schedule some

other process.

• Running Blocked

• Process requests an I/O operation, memory or some other resources.

• Process wishes to wait for some action by another process.

• Running Terminated

• Proper execution done by process.

• Termination by a parent.

PROCESS CONTROL BLOCK
•Process state – It stores the respective
state of the process.

•Process number – Every process is
assigned with a unique id known as
process ID or PID

•Program counter – It stores the counter
which contains the address of the next
instruction.

•Register – These are the CPU registers
which includes: accumulator, base,
registers.

•Memory limits – This field contains the
information about memory management.

•Open files list – List of files opened for a
process

•I/O information: Store information about
I/O devices.

LIFECYCLE OF THREAD
• A process is divided into several light-

weight processes, each light-weight

process is said to be a thread.

• The life cycle of thread is:

• New: A thread that has just created.

• Runnable: The System assigns the

processor to the thread means that the

thread is being executed.

• Blocked: The thread is waiting for an

event to occur or waiting for an I/O

device.

• Waiting: A sleeping thread becomes

ready after the designated sleep time

expires.

• Terminated/Dead: The execution of

the thread is finished.

TYPES OF THREAD:

• User level thread: User managed

threads

• The thread library contains code for

creating and destroying threads.

• User level thread can run on any

operating system.

• Scheduling can be application

specific in the user level thread.

• User level threads are fast to create

and manage.

• Kernel doesn’t know about the user

level thread

TYPES OF THREAD:

• Kernel level thread: Kernel knows

and manages the threads.

• OS kernel provides system call to

create and manage threads.

• The Kernel maintains information

for the process.

• The Kernel performs thread

creation, scheduling and

management in Kernel space.

• Kernel threads are slower to create

and manage.

• If one thread in a process is blocked,

the Kernel can schedule another

thread of the same process.

MULTITHREADING MODELS

• Many to many:

• Multiplexes any number of

user threads onto an equal or

smaller number of kernel

threads.

• Users can create any number

of the threads.

• Blocking the kernel system

calls does not block the entire

process.

• Processes can be split across

multiple processors.

MULTITHREADING MODELS

• Many to One:

• Many-to-one model maps

many user level threads to one

Kernel-level thread.

• When thread makes a blocking

system call, the entire process

will be blocked.

• Only one thread can access the

Kernel at a time.

• Multiple threads are unable to

run in parallel on

multiprocessors.

MULTITHREADING MODELS

• One to one:

• This model provides more

concurrency than the many-to-

one model

• One to one relationship

between kernel and user

thread. kernel thread.

• The one to one model maps

each of the user threads to a

kernel thread.

• Windows 2000 use one to one

relationship model

