
Prepared by:

Asst.Prof.Foram Patel

(Computer Department,ACET)

CHAPTER -3

CONCURRENCY

Subject:- OS

Code:-3140702

WHAT IS CONCURRENCY

• Multiple application:

• To allow sharing processing

time.

• Structured applications:

• Extension of the principles of

modular design.

• Operating system structure:

• Operating system are

themselves implemented as a

set of processes or threads.

PRICIPLE OF CONCURRENCY

• Concurrent access on shared data and result data inconsistency.

• Concurrency is the computation of process within a time frame to give

an impression of simultaneous execution.

• This is not the same thing as actually running simultaneously.

• True parallelism allow simultaneous execution of process.

• Example of concurrency:

• Concurrency in multiprogramming.

• Concurrency in multithreading

• Concurrency in multiprocessor.

• Concurrency in multi computer

MUTUAL EXCLUSION

• The process is accessing a

shared variable so process is in

critical section.

• No two threads simultaneously

in critical section.

• If process is executing in its

critical section ,then no other

processes can be executing in

their critical sections.

CRITICAL SECTION

• When one process is in a critical

section , all other processes are

excluded from their critical

section.

• Each process must ask

permission to enter critical

section in entry section , may

follow critical section with exit

section , then reminder section.

SEMAPHORES

• A semaphore is an object that

consists of a counter, a waiting

list of processes and two

methods : signal & wait.

• Semaphore is a synchronization

tool which can be used to deal

with the critical section

problem.

• It is a protected variable whose

value can be accessed and

altered only by the operation P

& V.

MONITOR

• Monitor is a highly structured

programming language

construct.

• Only one process may be active

within the monitor at a time.

• Private variables and Private

procedures - Use within a

monitor.

• Monitors have no public data.

MESSAGE PASSING

• Message passing is the basis of

the most inter-process

communication in distributed

system.

• It requires the programmer to

know

1) Message

2) Name of source

3) Destination process

• OS send() system call to pass

message to kernel. After

execution user process waits

for result with receive().

