
Prepared by:

Asst.Prof.Foram Patel

(Computer Department,ACET)

CHAPTER -6

MEMORY MANAGEMENT

Subject:- OS

Code:-3140702

FIXED PARTITION

• Oldest and simplest

technique

• To load more than one

processes into the main

memory.

• Main memory is

divided into partitions

of equal sizes.

• Number of partitions

(non-overlapping) in

RAM are fixed but

size of each partition

may or may not be

same.

•No spanning is allowed.

•Easy to implement.

•Little OS overhead.

VARIABLE PARTITION

•Partitions are made during the run-
time.

•Size of partition will be equal to
incoming process.

•Partition size varies according to the
need of the process.

•RAM is not fixed and depends on the
number of incoming process and Main
Memory’s size.

•There will be no unused space left in
the partition.

•The process size can’t be restricted
since the partition size is decided
according to the process size.

MEMORY ALLOCATION

• First Fit:

• The free/busy list of jobs organized

by memory location, low-ordered to

high-ordered memory.

• First available memory with space

more than or equal to it’s size.

• Best Fit:

• The free/busy list in order by size –

smallest to largest

• The os searches the whole

according to the size of the given

job and allocates it to the closest-

fitting free partition in the memory

MEMORY ALLOCATION

• Worst Fit:

• Scans the entire list every time and

tries to find out the biggest hole.

• This algorithm produces the larger

holes to load the other processes

• It is slower because it searches the

entire list every time

• Next Fit:

• Next Fit algorithm is similar to First

Fit .

• Next fit doesn't scan the whole list,

it starts scanning the list from the

next node

SWAPPING

• Swapping:

• A process must be in the main

memory before it starts execution.

• A process that is ready for

execution is brought in the main

memory.

• If a running the process gets

blocked.

• The memory manager

temporarily swaps out that blocked

process on to the disk.

• Makes the space for another process

in the main memory.

SWAPPING

• The memory manager swaps

in the process ready for

execution from disk

• Swapped out process is also

brought back into the main

memory

• Swapping of the processes also

depends on the priority-based

pre-emptive scheduling

• Allows dynamic relocation.

• It helps to get better utilization

of memory.

• Minimum wastage of CPU

time

PAGING
• Eliminates the need for

contiguous allocation of

physical memory

• The Physical Address Space is
conceptually divided into a
number of fixed-size blocks,
called frames.

• The Logical address Space is also
splitted into fixed-size blocks,
called pages.

• Logical address is divided into

page number and page offset

PAGING
• CPU generates a logical address

consisting of two parts-

Page Number, Page Offset

• Page Table provides the

corresponding frame number

• The frame number combined with

the page offset forms the required

physical address.

• Frame number specifies the

specific frame where the required

page is stored.

• Page Offset specifies the specific

word that has to be read from that

page.

DEMAND PAGING

• A demand paging mechanism is

very much similar to a paging

system with swapping

• processes stored in the secondary

memory and pages are loaded

only on demand, not in advance

• In demand paging, the pages are

of equal size.

• It does not allows sharing of the

pages.

• In demand paging, on demand

pages are loaded in the memory.

• It provides large virtual memory

and have more efficient use of

memory.

FRAGMENTATION

• As processes are loaded and removed

from memory, the free memory space

is broken into little pieces.

• processes cannot be allocated to

memory blocks considering their small

size and memory blocks remains

unused.

• At the time of process loading and

swapping there are many spaces left

which are not capable to load any other

process due to their size.

FRAGMENTATION
• Internal fragmentation:

• when the memory is split into mounted

sized blocks.

• An approach is to allocate very small

holes as part of the larger request.

• The allocated memory may be larger

than the requested memory.

• The solution of internal fragmentation

is best-fit block.

• External fragmentation:

• The process’s memory request cannot

be fulfilled because the memory

offered is during a non-contiguous

manner.

• Solution of external fragmentation is

compaction, paging and segmentation.

SEGMENTATION

•Segmentation is a memory
management technique in which,
the memory is divided into the
variable size parts

•Virtual memory segmentation:
Each process is divided into a
number of segments, not all of
which are resident at any one point
in time.

•Simple segmentation:
Each process is divided into a
number of segments, all of which
are loaded into memory at run time,
though not necessarily
contiguously.

SEGMENTATION

•CPU generates a logical address
which contains two parts:

Segment Number , Offset

•The Segment number is mapped to
the segment table.

•The limit of the respective
segment is compared with the
offset

•If the offset is less than the limit
then the address is valid otherwise
it throws an error as the address is
invalid

•Valid address, the base address of
the segment is added to the offset to
get the physical address of actual
word in the main memory.

VIRTUAL MEMORY

• Virtual Memory is a storage

mechanism which offers user an

illusion of having a very big main

memory.

• The user can store processes with a

bigger size than the available main

memory.

• Virtual memory serves two

purposes:

• First, it allows us to extend the use

of physical memory by using disk.

• Second, it allows us to have

memory protection, because each

virtual address is translated to a

physical address.

PAGE REPLACEMENT

ALGORITHM

• Want lowest page fault rate.

• Evaluate algorithm by running it on a particular string of

memory references and computing the number of page faults

and page replacements on that string.

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

FIFO (FIRST IN FIRST OUT)

PAGE REPLACEMENT

• Want lowest page fault rate.
• Simple to implement.

• When the buffer is full, the oldest page is replaced. Hence first in first

out :

• A frequently used page is often the oldest, so it will be repeatedly

paged out by FIFO.

• Easy to understand.

• Performance is not always good.

FIFO (FIRST IN FIRST OUT)

PAGE REPLACEMENT

OPTIMAL PAGE REPLACEMENT

ALGORITHM

• An optimal page-replacement algorithm has the lowest page-fault rate

of all algorithms.

• It is practically impossible to implement this algorithm.

• This is because the pages that will not be used in future for the longest

time can not be predicted.

• In this algorithm, pages are replaced which would not be used for the

longest duration of time in the future.

OPTIMAL PAGE REPLACEMENT

ALGORITHM

LRU PAGE REPLACEMENT

ALGORITHM

• Page which has not been used for the longest time in main memory.

• Easy to implement, keep a list, replace pages by looking back into

time.

• This algorithm works on the principle of “Least Recently Used“.

• It replaces the page that has not been referred by the CPU for the

longest time.

LRU PAGE REPLACEMENT

ALGORITHM

•PAGE HIT: 8 •PAGE FAULT : 12

