
 
 
 
 
 
 
 
 
 
 
 

 

LABORATORY   MANUAL 
 

 

OPERATING SYSTEM 
 

SUBJECT CODE: 3140702 
 

COMPUTER SCIENCE AND ENGINEERING  

DEPARTMENT B.E. 4
th

 SEMESTER 
 
 
 
 

NAME: 
 

 

ENROLLMENT NO: 
 

 

BATCH NO: 
 

 

YEAR: 
 
 
 
 
 
 
 
 
 
 
 

Amiraj College of Engineering and Technology,  

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad. 
 

1  



 
 
 
 
 
 
 
 
 
 

 

Amiraj College of Engineering and Technology,  

Nr.Tata Nano Plant, Khoraj, Sanand, Ahmedabad. 
 
 
 
 
 
 
 
 
 

 

CERTIFICATE 
 

 

This is to certify that Mr. / Ms. ______________________________________________ 
 

Of class____________________ Enrolment No ___________________________has 
 

Satisfactorily completed the course in ____________________________________as 
 

by the Gujarat Technological University for ____ Year (B.E.) semester___  of 
 

Computer Science and Engineering in the Academic year ______. 
 
 
 

 

Date of Submission:- 
 
 
 
 

 

Faculty Name and Signature 
 

Foram Patel  

 
 
 
 

 

Head of Department 
 

(CSE) 



 

 

 
 

 
 
 
 
 

 

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT 
 

B.E. 4
th

 SEMESTER 
 

               SUBJECT: OPERATING SYSTEM 
 

SUBJECT CODE: 3140702 
 

List of Experiments 
 

Sr. 

No. 
Date 

Page 

No. Experiments 
Teacher’s 

Sign. 
Marks 

1   Study of Basic commands of Linux/UNIX.   

2 

 

 

Write a shell script to generate marksheet of a student. Take 3 

subjects, calculate and display total marks, percentage and Class 

obtained by the student. 
  

3   Write a shell script to find factorial of given number n.   

4 
 

 
 Write a shell script which will generate first n fibonnacci 

numbers like: 1, 1, 2, 3, 5 
  

5 

 

 

Write a menu driven shell script which will print the following 

menu and execute the given task. 

a. Display calendar of current month 

b. Display today’s date and time 

c. Display usernames those are currently logged in the system 

d. Display your name at given x, y position 

e. Display your terminal number 

  

6   Write a shell script to check entered string is palindrome or not.   

7   Write a shell script to validate the entered date.   

8 
 

 
Write a shell script to convert each word in a given text into 

capital. 
  

9  
 Study of Unix Shell and Environment Variables.   

10   Study of Advance commands and filters of Linux/UNIX.                                  
 

 

Faculty Member 

  

Department coordinator 

Foram Patel 

  

Foram Patel 
 



 

 

 
 

Practical -1 

Aim: Explain and run basic commands-

(cal,cat,cc,cd,chdir,clear,cls,cmp,copy,cp,date,ed,edit,exit,find,ls,man,mkdir,mv,printf, 

ps, pwd, rm,rmdir,sleep,wc). 

commands: 

 

1) Cal: Displays a calendar  

 Syntax: - cal [options] [month] [year]  

 Description:-  

cal displays a simple calendar. If arguments are not specified, the current month is displayed. The 

switching options are as follows:   

-

1  

Display single (current) month output. (This is the default.)  

-

3  

Display prev/current/next month output  

-

s  

Display Sunday as the first day of the week (This is the 

default.)  

-

m  

Display Monday as the first day of the week  

-j  Display Julian dates (days one-based, numbered from 

January 1)  

-

y  

Display a calendar for the current year  

 

2) cat: It is used to create, display and concatenate file contents. 

 Syntax: - cat [options] [FILE]...  

 Description:-  

 

-

A  

Show all.  

-

b  

Omits line numbers for blank space in the output.  

-

e  

A $ character will be printed at the end of each line prior to a 

new line.  

-

E  

Displays a $ (dollar sign) at the end of each line.  



 

 

 
 

-

n  

Line numbers for all the output lines.  

-s  If the output has multiple empty lines it replaces it with one 

empty line.  

-

T  

Displays the tab characters in the output.  

-

v  

Non-printing characters (with the exception of tabs, new-lines 

and form-feeds) are printed visibly.  

 

Two basically three uses of the cat command.  

1) Create new files.  

2) Display the contents of an existing file.   

3) Concatenate the content of multiple files and display.  

3) cd: It is used to change the directory.  

 Syntax: - cd [directory]  

 Description:-  

         Used to go back one directory on the majority of all UNIX shells. It is important that the 

space be between the cd and directory name. 

4) cp: - cp command copy files from one location to another. If the destination is an existing file, then 

the file is overwritten; if the destination is an existing directory, the file is copied into the 

directory (the directory is not overwritten). 

   Syntax: - cp [options]... source destination 

 Description:-  

 Here, after cp command contents of both source file and destination file files are the same.   

 It will copy the content of source file to destination file.  

 If the destination file doesn’t exist, it will be created.   

 If it exists then it will be overwritten without any warning.   

 If there is only one file to be copied then destination can be the ordinary file or the directory file.   

-a  archive files  

-f  force copy by removing the destination file if needed  

-i  interactive - ask before overwrite  

-l  link files instead of copy  

-L  follow symbolic links  

-n  no file overwrite  

-u  update - copy when source is newer than dest  

 

5) clear: - It clears the terminal screen.  

 Syntax: - clear  

 Description:-  

 Clear clears your screen if this is possible, including its scroll back buffer.  



 

 

 
 

 Clear ignores any command-line parameters that may be present.  

.  

6) mkdir:- This command is used to create a new directory   

 Syntax: - mkdir [options] directory  

 Description:-  

 

-m   Set permission mode (as in chmod)   

-p   No error if existing, make parent directories as 

needed.  

-v   Print a message for each created directory   

directory   The name of the directory that you wish to create   

 

7) cmp:-  It compares two files and tells you which line numbers are different. 

     Syntax : -  cmp [options..] file1 file2    

 Description:-  

Let’s create a file named os2. And use cmp command to compare os and os1files. 

- 

c  

Output differing bytes as characters.  

- 

l  

Print the byte number (decimal) and the differing byte values 

(octal) for each difference.  

- 

s  

Prints nothing for differing files, return exit status only.  

- 

c  

Output differing bytes as characters.  

8) cp:- cp command copy files from one location to another. If the destination is an existing file, 

then the file is overwritten; if the destination is an existing directory, the file is copied into the 

directory (the directory is not overwritten). 

 Syntax: - cp [options]... source destination 

 Description:-  

 Here, after cp command contents of both source file and destination file files are the same.   

 It will copy the content of source file to destination file.  

 If the destination file doesn’t exist, it will be created.   

 If it exists then it will be overwritten without any warning.   

 If there is only one file to be copied then destination can be the ordinary file or the directory file.   

-a  archive files  

-f  force copy by removing the destination file if needed  

-i  interactive - ask before overwrite  

-l  link files instead of copy  

-L  follow symbolic links  

-n  no file overwrite  



 

 

 
 

-u  update - copy when source is newer than dest  

 

9) bc:- bc command is used for command line calculator. It is similar to basic calculator. By   

using which we can do basic mathematical calculations.  

 Syntax:bc[options] 

 Description:-  

 bc is a language that supports arbitrary precision numbers with interactive execution of 

statements.   

 bc starts by processing code from all the files listed on the command line in the order listed. After 

all files have been processed, bc reads from the standard input. All code is executed as it is read.   

 

-q  To avoid bc welcome message  

-l  To include math library functionalities  

 

10) exit:Exit immediately after writing the last line of the last file in the argument list.  

11) find:- Finds one or more files assuming that you know their approximate path.  

 Syntax :- find [options] path 

 Description :-  

Find is one of the powerful utility of Unix (or Linux) used for searching the files in a directory 

hierarchy  

path   A path name of a starting point in the directory 

hierarchy   

-

maxdepth  

Descend at most levels (a non-negative integer) levels 

of directories below the command line arguments.  

-i   ignore the case in the current directory and sub-

directories.  

-size  Find file based on size  

12) ls:- Lists the contents of a directory   

 Syntax :- ls [options]  

 Description :-  

-

a   

Shows you all files, even files that are hidden (these files 

begin with a dot.)   

-

A   

List all files including the hidden files. However, does not 

display the working directory (.) or the parent directory (..).   

-

d   

If an argument is a directory it only lists its name not its 

contents   

-l   Shows you huge amounts of information (permissions, 

owners, size, and when last modified.)   

- Displays a slash ( / ) in front of all directories   



 

 

 
 

p   

-r   Reverses the order of how the files are displayed   

-

R   

Includes the contents of subdirectories   

13) man:- man command which is short for manual, provides in depth information about the 

requested command (or) allows users to search for commands related to a particular keyword.  

 Syntax:- man commandname [options]  

 Description :-  

-a  Print a one-line help message and exit.  

-k  Searches for keywords in all of the manuals available.  

14) mkdir:- This command is used to create a new directory   

 Syntax :- mkdir [options] directory  

 Description :-  

 

-m   Set permission mode (as in chmod)   

-p   No error if existing, make parent directories as 

needed.  

-v   Print a message for each created directory   

directory   The name of the directory that you wish to create   

 

15) mv:- It is used to move/rename file from one directory to another.  

 Syntax :- mv [options] oldname newname  

 Description :- 

 mv command which is short for move.  

 mv command is different from cp command as it completely removes the file from the source and 

moves to the directory specified, where cp command just copies the content from one file to 

another.  

 mv has two functions: it renames a file and it moves a group of files to a different directory. Mv 

doesn’t create a copy of the file , it merely renames it. No additional space is consumed on disk 

during renaming. For example if we rename a file os to os1 and then if we try to read file os we 

will get error message as it is renamed to os1 there is no existence of file named os.   

 

16) ps:- It is used to report the process status. ps is the short name for Process Status. 

 Syntax:- ps [options]  

 

 Description :-  

-

a   

List information about all processes most frequently 

requested: all those except process group leaders and 

processes not associated with a terminal   



 

 

 
 

-

A   

List information for all processes. Identical to -e, below   

-f   Generate a full listing   

-j   Print session ID and process group ID   

-l   Generate a long listing   

17) pwd:-Displaying  your current directory name (Print working directory).   

 Syntax:-pwd [options] 

 Description:- 

At the time of logging in user is placed in the specific directory of the file system. You can move 

around from one directory to another, but any point of time, you are located in only one directory. 

This directory is known as your current directory.  

           pwd command tells your current directory.   

18) rmdir:- It is used to delete/remove a directory and its subdirectories.  

 Syntax :- rmdir [options..] Directory  

 Description :-  

It removes only empty directory.  

 

-

p  

Allow users to remove the directory and its parent directories 

which become empty.  

19) rm:- It is used to remove/delete the file from the directory. 

 Syntax :- rm [options..] [file|directory] 

 Description :-  

 Files can be deleted with rm. It can delete more than one file with a single invocation. For 

deleting a single file we have to use rm command with filename to be deleted.   

 Deleted file can’t be recovered. rm can’t delete the directories. If we want to remove all the files 

from the particular directory we can use the * symbol. 

 

-f  Ignore nonexistent files, and never prompt before 

removing.  

-i  Prompt before every removal.  

 

 Example :- 

          $ rm myfile.txt 

 Remove the file myfile.txt. If the file is write-protected, you will be prompted to confirm that you 

really want to delete it.  

$ rm *  

 Remove all files in the working directory. If it is write-protected, you will be prompted before rm 

removes it. 

$ rm -f myfile.txt  

 Remove the file myfile.txt. You will not be prompted, even if the file is writeprotected; if rm can 

delete the file, it will.  

$ rm -f *  



 

 

 
 

 Remove all files in the working directory. rm will not prompt you for any reason before deleting 

them.  

$ rm -i *  

 Attempt to remove every file in the working directory, but prompt before each file to confirm.  

20) sleep:- Delay for a specified amount of time 

        Syntax :- sleep NUMBER[SUFFIX] 

 Description:-  

 The sleep command pauses for an amount of time defined by NUMBER.  

  SUFFIX may be "s" for seconds (the default), "m" for minutes, "h" for hours, or "d" for   

days.14.ed: 

21) wc:-  Word Count (wc) command counts and displays the number of lines, words, character 

and number of bytes enclosed in a file.  

 Syntax: - wc [options] [filename]  

 

 Description:- 

This command counts lines, words and characters depending on the options used. It takes one or 

more filenames as its arguments and displays four-columnar output. For example let’s read our 

os1 file. And we use wc command with that filename.   

-l   print the newline counts.  

-w   print the word counts.  

-c   print the byte counts.  

-m  print the character counts.  

-L  print the length of the longest line.  

 

22) finger:- finger command displays the user's login name, real name, terminal name and write    

status (as a ''*'' after the terminal name if write permission is denied), idle time, login time, office 

location and office phone number. 

 Syntax:- finger [username]  

  

Description :-  

-l   Force long output format   

-s   Force short output format   



 

 
 

PRACTICAL – 2 

AIM : Write a shell script to generate marksheet of a student. Take 3 

subjects, calculate and display total marks, percentage and Class 

obtained by the student. 
 

echo " Enter name " 

read name 

echo " Enter enrollment number " 

read no 

echo " Enter your marks " 

read m1 

read m2 

read m3 

total=$(expr $m1 + $m2 + $m3 ) 

avg=$(expr $total / 3)  

  echo "Student Name : $name" 

  echo "EnrollMent NUmber: $no" 

  echo "Average is : $avg" 

if [ $m1 -ge 35 ] && [ $m2 -ge 35 ] && [ $m3 -ge 35 ] 

 then  

  echo "Result is: Pass" 

if [ $avg -ge 80 ] && [ $avg -le 100 ] 

 then  

  echo "Result is: Distinction" 

 elif [ $avg -ge 61 ] && [ $avg -le 79 ]  

 then  

 echo "Result is: First class"  

 elif [ $avg -ge 35 ] && [ $avg -le 60 ]  

 then  

 echo "Result is: Second class"  

fi 

 else 

  echo "Result is: fail" 

fi 

 

O/P : 

Enter name  

DJ 

 Enter enrollment number  

13 

 Enter your marks  

89 

90 

98 

Average is : 92 

Result is: Distinction



 

 
 

PRACTICAL – 3 

AIM : Write a shell script to find factorial of given number n. 
 

echo "Enter the number to find factorial?" 

read number 

fact=1 

while [ $number -gt 0 ] 

do 

fact=`expr $number \* $fact` 

number=`expr $number - 1` 

done 

echo "factorial is : $fact" 

 

 

O/P: 

 

DJ@ubuntu:~/Downloads/Practicals/OS _Practicals$ bash fab.sh 

Enter a number 

 

3 

 

6 

 

Enter a number 

 

4 

 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

PRACTICAL – 4 

AIM : Write a shell script which will generate first n fibonnacci numbers 

like: 1, 1, 2, 3, 5 
 

N=6  

     a=0  

b=1   

   

echo "The Fibonacci series is : " 

    

for (( i=0; i<N; i++ ))  

do 

    echo -n "$a " 

    fn=$((a + b))  

    a=$b  

    b=$fn  

done 

# End of for loop  

 

 

 

Output: 

 

Fibonacci Series is:  

0 

1 

1 

2 

3 

5 

8



 

 
 

PRACTICAL – 5 

AIM : Write a menu driven shell script which will print the following 

menu and execute the given task. 

a. Display calendar of current month 

b. Display today’s date and time 

c. Display usernames those are currently logged in the system 

d. Display your name at given x, y position 

e. Display your terminal number. 
 

 

echo “ MENU 

a.      . Display calendar of current month 

b.      . Display today’s date and time 

c.       . Display usernames those are currently logged in the system  

d.      . Display your terminal number 

e.        . Exit 

 

Read i 

Case “$i” in 

1)      cal ;; 

2)      date ;; 

3)      who;; 

4)      tty ;; 

5)      exit ;; 

*) echo “enter valid in put” ;; 

esac 

 

 

Output: 

 

1) DJ@ubuntu:~/Downloads/Practicals/OS _Practicals$ cal 

   February 2018       

Su Mo Tu We Th Fr Sa   

       1  2  3   

 4   5   6   7   8   9 10   

11 12 13 14 15 16 17   

18 19 20 21 22 23 24   

25 26 27 28   

 

2) DJ@ubuntu:~/Downloads/Practicals/OS _Practicals$ date 

Mon Feb 26 20:16:47 PST 2018 

 

3) DJ@ubuntu:~/Downloads/Practicals/OS _Practicals$ who 

paras    tty7         2018-02-26 19:48 (:0) 

 

4) DJ@ubuntu:~/Downloads/Practicals/OS _Practicals$ tty 

/dev/pts/1 

 



 

 
 

PRACTICAL – 6 

AIM : Write a shell script to check entered number  is palindrome or 

not. 
 

num=545  
    
# Storing the remainder  
s=0  
 

# Store number in reverse   
rev="" 
temp=$num  
 while [ $num -gt 0 ]  
do 
    # Get Remainder  
    s=$(( $num % 10 ))    
    # Get next digit  
    num=$(( $num / 10 ))   
    
    # Store previous number and  
    # current digit in reverse   
    rev=$( echo ${rev}${s} )   
done 
  if [ $temp -eq $rev ];  
then 
    echo "Number is palindrome" 
else 
    echo "Number is NOT palindrome" 
fi 

 
Output: 

 

Number is palindrome 

 

 

 



 

 
 

PRACTICAL – 7 

AIM :  Write a shell script which will accept a number b and display 

first n prime numbers as output. 
 

prime_1=0 

echo "enter the range" 

read n 

echo " Primenumber between 1 to $n is:" 

echo "1"   

echo "2" 

for((i=3;i<=n;)) 

do 

for((j=i-1;j>=2;)) 

do 

if [  `expr $i % $j` -ne 0 ] ; then 

prime_1=1 

else 

prime_1=0 

break 

fi 

j=`expr $j - 1` 

done 

if [ $prime_1 -eq 1 ] ; then 

echo $i 

fi 

i=`expr $i + 1` 

done 

 

Output: 

 

Enter the range 

25 

Prime number 1 to 25 is : 

1 

2 

3 

5 

7 

11 

13 

17 

19 

23 

 

 

 

 



 

 
 

PRACTICAL – 8 

AIM : Write a shell script to display multiplication table of given 

number. 

 
clear  

echo -----------------------------------  

echo '\tMultiplication Table'  

echo -----------------------------------  

echo Enter table number  

read tn  

echo Enter how many rows  

read n  

i=1  

while [ $i -le $n ]  

do  

        k=$(expr $i \* $tn)  

        echo "$i * $tn = $k"  

        i=$(expr $i + 1)  

done  

 

 

Output: 

 

Enter table number  

6  

Enter how many rows  

5  

1 * 6 = 6  

2 * 6 = 12  

3 * 6 = 18  

4 * 6 = 24  

5 * 6 = 30 

 

 



 

 
 

PRACTICAL – 9 

AIM : Study of Unix Shell and Environment Variables. 
 

What is an environment variable? 

Environment variables or ENVs basically define behavior of the environment. They can affect the 

processes ongoing or the programs that are executed in the environment. 

 

Scope of an environment variable 

Scope of any variable is the region from which it can be accessed or over which it is defined. An 

environment variable in Linux can have global or local scope. 

 

Global 

A globally scoped ENV that is defined in a terminal can be accessed from anywhere in that 

particular environment which exists in the terminal. That means it can be used in all kind of scripts, 

programs or processes running in the environment bound by that terminal. 

 

Local 

A locally scoped ENV that is defined in a terminal cannot be accessed by any program or process 

running in the terminal. It can only be accessed by the terminal( in which it was defined) itself. 

 

Variable Description 

USER The username 

HOME Default path to the user's home directory 

EDITOR Path to the program which edits the content of files 

UID User's unique ID 

TERM Default terminal emulator 

SHELL Shell being used by the user 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Practical 10 : 

 
AIM : Study of Advance commands and filters of Linux/UNIX. 
 

Linux Filter commands accept input data from stdin (standard input) and produce output 

on stdout (standard output). It transforms plain-text data into a meaningful way and can be used 

with pipes to perform higher operations. 

. 

Linux Filter Commands 

1. cat 

      Syntax: 

       cat <fileName> | cat or tac |  cat or tac |. . .   

2. cut 

      Syntax: 

The 'cut' command is useful in selecting a specific column of a file. After (-d), delimiter (from 

where you want to separate the columns) comes. Delimiters can be a space (' '), a hyphen (-), a slash 

(/) or anything else. After (-f), column number is mentioned. 

Syntax: 

cut -d(delimiter) -f(columnNumber) <fileName>   

3. grep 

The 'grep' command is generally used with pipe (|). 

Syntax: 

command | grep <searchWord>   

4. comm 

The 'comm' command compares two files or streams. By default, 'comm' will always display three 

columns. First column indicates non-matching items of first file, second column indicates non-

matching items of second file, and third column indicates matching items of both the files. Both the 

files has to be in sorted order for 'comm' command to be executed. 

Syntax: 

comm <file1> <file2>  

5. sed 

https://www.javatpoint.com/linux-cat-filters
https://www.javatpoint.com/linux-cut
https://www.javatpoint.com/linux-grep
https://www.javatpoint.com/linux-comm
https://www.javatpoint.com/linux-sed


 

 
 

Command 'sed' stands for stream editor. You can use this command to edit streams (files) using 

regular expressions. But this editing is not permanent. It remains only in display, but in actual, file 

content remains same. 

Syntax: 

command | sed 's/<oldWord>/<newWord>/'   

6. tee 

The 'tee' command is similar to 'cat' command with only one difference. It puts stdin on stdout and 

also put them into a file. 

Syntax: 

cat or tac <fileName> | tee <newFile> |  cat or tac |.....   

7. tr 

The command 'tr' stands for 'translate'. It is used to translate, like from lowercase to uppercase and 

vice versa or new lines into spaces. 

Syntax: 

command | tr <'old'> <'new'>   

8. uniq 

With the help of uniq command you can form a sorted list in which every word will occur only 

once. 

Syntax: 

command <fileName> | uniq   

9. wc 

The 'wc' command helps in counting the lines, words and characters in a file. 

Syntax: 

1. wc <fileName>     (Counts words, lines and characters)   

2. wc -l <fileName>      (Counts only lines)   

3. wc -w <fileName>      (Counts only words)   

4. wc -c <fileName>      (Counts only characters)   

https://www.javatpoint.com/linux-tee
https://www.javatpoint.com/linux-tr
https://www.javatpoint.com/linux-uniq
https://www.javatpoint.com/linux-wc


 

 
 

10. od 

The 'od' term stands for octal dump. It displays content of a file in different human-readable formats 

like hexadecimal, octal and ASCII characters. 

Syntax: 

1. od -b <fileName>      (display files in octal format)   

2. od -t x1 <fileName>       (display files in hexadecimal bytes format)   

3. od -c <fileName>      (display files in ASCII (backslashed) character format)   

 
 

https://www.javatpoint.com/linux-od

