
CHAPTER 1
INTRODUCTION TO JAVA AND ELEMENTARY

PROGRAMMING

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

JAVA LANGUAGE SPECIFICATION API,JDK & IDE.
❖ Java syntax is defined in the Java language specification, and the Java library is

defined in the Java application program interface (API). The JDK is the software for
compiling and running Java programs. An IDE is an integrated development
environment for rapidly developing programs.

❖ Computer languages have strict rules of usage. If you do not follow the rules when
writing a program, the computer will not be able to understand it. The Java language
specification and the Java API define the Java standards.

❖ The Java language specification is a technical definition of the Java programming
language’s syntax and semantics. You can find the complete Java language
specification at docs.oracle.com/javase/specs/.

JAVA LANGUAGE SPECIFICATION API,JDK & IDE.
❖ The application program interface (API), also known as library, contains predefined classes and

interfaces for developing Java programs. The API is still expanding. You can view and download
the latest version of the Java API at download.java.net/jdk8/docs/api/.

❖ Java is a full-fledged and powerful language that can be used in many ways. It comes in three
editions:
➢ Java Standard Edition (Java SE) to develop client-side applications. The applications can

run on desktop.
➢ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java

servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).
➢ Java Micro Edition (Java ME) to develop applications for mobile devices, such as cell

phones.

JAVA LANGUAGE SPECIFICATION API,JDK & IDE.
❖ Java SE is the foundation upon which all other Java technology is based. There are

many versions of Java SE. Oracle releases each version with a Java Development
Toolkit (JDK).

❖ The JDK consists of a set of separate programs, each invoked from a command line,
for compiling, running, and testing Java programs. The program for running Java
programs is known as JRE (Java Runtime Environment)

❖ Instead of using the JDK, you can use a Java development tool (e.g., NetBeans,
Eclipse, and TextPad)—software that provides an integrated development
environment (IDE) for developing Java programs quickly.

FEATURES OF JAVA
❖ Object Oriented
❖ Platform Independent.
❖ Simple.
❖ Secure.
❖ Architecture-neutral.
❖ Portable.
❖ Robust.
❖ Multithreaded.
❖ High Performance

PROGRAMMING STRUCTURE

CREATING AND COMPILING AND EXECUTING A
SIMPLE JAVA PROGRAM
CREATING JAVA PROGRAM:

public class FirstJavaProgram {
 public static void main(String[] args){
 System.out.println("This is my first program in java");
 }//End of main
}//End of FirstJavaProgram Class

CREATING AND COMPILING AND EXECUTING A
SIMPLE JAVA PROGRAM
COMPILING AND RUNNING
ABOVE PROGRAM:

Step 1: Open a text editor, like Notepad on windows
and TextEdit on Mac. Copy the above program and
paste it in the text editor.

You can also use IDE like Eclipse to run the java
program but we will cover that part later in the
coming tutorials. For the sake of simplicity, I will only
use text editor and command prompt (or terminal).

Step 2: Save the file as FirstJavaProgram.java. You may be wondering why we have
named the file as FirstJavaProgram, the thing is that we should always name the file same
as the public class name. In our program, the public class name is FirstJavaProgram, that’s
why our file name should be FirstJavaProgram.jav

Step 3: In this step, we will compile the program. For this, open command prompt (cmd)
on Windows, if you are Mac OS then open Terminal.

CONCEPT OF BYTECODE AND JVM

What is JVM?

Java virtual Machine (JVM) is a virtual Machine that provides runtime environment to

execute java byte code.

The JVM doesn't understand Java typo, that's why you compile your *.java files to obtain

*.class files that contain the bytecodes understandable by the JVM.

JVM control execution of every Java program.

It enables features such as automated exception handling, Garbage-collected heap.

What is Bytecode?

Bytecode is nothing but the

intermediate representation of Java

source code which is produced by

the Java compiler by compiling that

source code. This byte code is an

machine independent code.It is not

an completely a compiled code but it

is an intermediate code somewhere

in the middle which is later

interpreted and executed by

JVM.Bytecode is a machine code for

JVM.

PROGRAMMING STYLE IN JAVA
❖ every class should be in a separate file;
❖ use meaningful names for the variables and for the file names;
❖ use comments; ...
❖ always use {} for blocks corresponding to "if", "while", and "for" statements,

even if the corresponding block consists of only one statement;
❖ use indentation;

BLOCK STYLE
1) Next Line Style

Public class Test

{

 Public static void main(String[] args)

 {

 System.out.println(“welcome”);

 }
}

2)End of Line Style

Public class Test{

 Public static void main(String[] args)

 {

 System.out.println(“welcome”);

 }

}

PROGRAMMING ERRORS
Programming errors can be categorized into three types:

1. syntax error
2. runtime errors
3. logic errors

1. Syntax Errors

Errors that are detected by the compiler are called syntax errors or compile errors. Syntax errors result from errors
in code construction, such as mistyping a keyword, omitting some necessary punctuation, or using an opening brace
without a corresponding closing brace.

These errors are usually easy to detect because the compiler tells you where they are and what caused them. For
example, the following program has a syntax error:

public class JavaDemo {

 public static main(String[] args) {

 System.out.println("Hello World Example);

 }

}

2. Runtime Errors

Runtime errors are errors that cause a program to terminate abnormally. They occur while a program
is running if the environment detects an operation that is impossible to carry out. Input mistakes
typically cause runtime errors. An input error occurs when the program is waiting for the user to enter
a value, but the user enters a value that the program cannot handle.

For instance, if the program expects to read in a number, but instead the user enters a string, this
causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is zero for
integer divisions. For instance, the following program would cause a runtime error:

public class JavaDemo {

 public static void main(String[] args) {

 System.out.println(10/0);

 }

}

Output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at com.javaguides.JavaDemo.main(JavaDemo.java:24)

Logic Errors

Logic errors occur when a program does not perform the way it was intended to. Errors of this kind occur for many
different reasons. For example, suppose you wrote the program to convert Celsius 35 degrees to a Fahrenheit degree:

public class JavaDemo {

 public static void main(String[] args) {

 System.out.println("Celsius 35 is Fahrenheit degree ");

 System.out.println((9 / 5) * 35 + 32);

 }

}

Output:

Celsius 35 is Fahrenheit degree

67

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the division for integers is the
quotient—the fractional part is truncated—so in Java 9 / 5 is 1. To get the correct result, you need to use 9.0 / 5,
which results in 1.8.

Common Errors

Missing a closing brace, missing a semicolon, missing quotation marks for strings, and misspelling names are
common errors for new programmers.

IDENTIFIER AND VARIABLES
public class Test

{

 public static void main(String[] args)

 {

 int a = 20;

 }

}

In the above java code, we have 5 identifiers namely :

● Test : class name.
● main : method name.
● String : predefined class name.
● args : variable name.
● a : variable name.

Rules for defining Java Identifiers

There are certain rules for defining a valid java identifier. These rules must be followed, otherwise we get compile-time error. These
rules are also valid for other languages like C,C++.

● The only allowed characters for identifiers are all alphanumeric characters([A-Z],[a-z],[0-9]), ‘$‘(dollar sign) and ‘_‘

(underscore).For example “geek@” is not a valid java identifier as it contain ‘@’ special character.

● Identifiers should not start with digits([0-9]). For example “123geeks” is a not a valid java identifier.

● Java identifiers are case-sensitive.

● There is no limit on the length of the identifier but it is advisable to use an optimum length of 4 – 15 letters only.

● Reserved Words can’t be used as an identifier. For example “int while = 20;” is an invalid statement as while is a

reserved word. There are 53 reserved words in Java.

Examples of valid identifiers :

MyVariable

MYVARIABLE

myvariable

x

i

i

x1

i1

_myvariable

$myvariable

sum_of_array

geeks123

Examples of invalid identifiers :

My Variable // contains a space

123geeks // Begins with a digit

a+c // plus sign is not an alphanumeric character

variable-2 // hyphen is not an alphanumeric character

sum_&_difference // ampersand is not an

alphanumeric character

VARIABLES IN JAVA
Variable is name of reserved area allocated in memory. In other words, it is a name of memory location. It is a

combination of "vary + able" that means its value can be changed.

int data=50;//Here data is variable

Types of Variables

There are three types of variables in java:

● local variable

● instance variable

● static variable

1) Local Variable

A variable declared inside the body of the method is called local variable. You can use this variable only within that method and the

other methods in the class aren't even aware that the variable exists.

A local variable cannot be defined with "static" keyword.

2) Instance Variable

A variable declared inside the class but outside the body of the method, is called instance variable. It is not declared as static.

It is called instance variable because its value is instance specific and is not shared among instances.

3) Static variable

A variable which is declared as static is called static variable. It cannot be local. You can create a single copy of static variable and share

among all the instances of the class. Memory allocation for static variable happens only once when the class is loaded in the memory.

Example to understand the types of variables in java

1. class A{

2. int data=50;//instance variable

3. static int m=100;//static variable

4. void method(){

5. int n=90;//local variable

6. }

7. }//end of class

DATA TYPES
Data types specify the different sizes and values that can be stored in the variable. There are two types
of data types in Java:

1. Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float

and double.

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and

Arrays.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data manipulation. These are the most
basic data types available in Java language.

There are 8 types of primitive data types:

● boolean data type

● byte data type

● char data type

● short data type

● int data type

● long data type

● float data type

● double data type

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

BOOLEAN DATATYPE
The Boolean data type is used to store only two possible values: true and false. This data type is used

for simple flags that track true/false conditions.

The Boolean data type specifies one bit of information, but its "size" can't be defined precisely.

Example: Boolean one = false

BYTE DATATYPE
The byte data type is an example of primitive data type. It isan 8-bit signed two's complement integer.

Its value-range lies between -128 to 127 (inclusive). Its minimum value is -128 and maximum value is

127. Its default value is 0.

The byte data type is used to save memory in large arrays where the memory savings is most required.

It saves space because a byte is 4 times smaller than an integer. It can also be used in place of "int"

data type.

Example: byte a = 10, byte b = -20

SHORT DATATYPE
The short data type is a 16-bit signed two's complement integer. Its value-range lies between -32,768

to 32,767 (inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its default value is

0.

The short data type can also be used to save memory just like byte data type. A short data type is 2

times smaller than an integer.

Example: short s = 10000, short r = -5000

INT DATATYPE
The int data type is a 32-bit signed two's complement integer. Its value-range lies between -

2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum value is -

2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.

The int data type is generally used as a default data type for integral values unless if there is no

problem about memory.

Example: int a = 100000, int b = -200000

LONG DATATYPE
The long data type is a 64-bit two's complement integer. Its value-range lies between

-9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -1)(inclusive). Its minimum

value is - 9,223,372,036,854,775,808and maximum value is 9,223,372,036,854,775,807. Its default

value is 0. The long data type is used when you need a range of values more than those provided by

int.

Example: long a = 100000L, long b = -200000L

FLOAT DATATYPE
The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is unlimited. It

is recommended to use a float (instead of double) if you need to save memory in large arrays of

floating point numbers. The float data type should never be used for precise values, such as currency.

Its default value is 0.0F.

Example: float f1 = 234.5f

DOUBLE DATATYPE
The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is

unlimited. The double data type is generally used for decimal values just like float. The double data

type also should never be used for precise values, such as currency. Its default value is 0.0d.

Example: double d1 = 12.3

CHAR DATATYPE
The char data type is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or 0) to

'\uffff' (or 65,535 inclusive).The char data type is used to store characters.

Example: char letterA = 'A'

NON-PRIMITIVE DATATYPE
The Reference Data Types will contain a memory address of variable value because the reference types won’t store

the variable value directly in memory. They are strings, objects, arrays, etc.

String: Strings are defined as an array of characters. The difference between a character array and a string is the
string is terminated with a special character ‘\0’.
Below is the basic syntax for declaring a string in Java programming language.
Syntax:
<String_Type> <string_variable> = “<sequence_of_string>”;
Example:
// Declare String without using new operator

String s = "GeeksforGeeks";

// Declare String using new operator

● String s1 = new String("GeeksforGeeks");

https://www.geeksforgeeks.org/strings-in-java/
https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/arrays-in-java/
https://www.geeksforgeeks.org/strings-in-java/

❖ Interface: Like a class, an interface can have methods and variables, but the methods declared

in an interface are by default abstract (only method signature, no body).

➢ Interfaces specify what a class must do and not how. It is the blueprint of the class.

➢ An Interface is about capabilities like a Player may be an interface and any class

implementing Player must be able to (or must implement) move(). So it specifies a set of

methods that the class has to implement.

➢ If a class implements an interface and does not provide method bodies for all functions

specified in the interface, then class must be declared abstract.

➢ A Java library example is, Comparator Interface. If a class implements this interface, then

it can be used to sort a collection.

https://www.geeksforgeeks.org/interfaces-in-java/
https://www.geeksforgeeks.org/comparator-interface-java/

❖ Array: An array is a group of like-typed variables that are referred to by a common name.Arrays in Java work

differently than they do in C/C++. Following are some important point about Java arrays.

➢ In Java all arrays are dynamically allocated.(discussed below)

➢ Since arrays are objects in Java, we can find their length using member length. This is different from

C/C++ where we find length using sizeof.

➢ A Java array variable can also be declared like other variables with [] after the data type.

➢ The variables in the array are ordered and each have an index beginning from 0.

➢ Java array can be also be used as a static field, a local variable or a method parameter.

➢ The size of an array must be specified by an int value and not long or short.

➢ The direct superclass of an array type is Object.

➢ Every array type implements the interfaces Cloneable and java.io.Serializable.

https://www.geeksforgeeks.org/arrays-in-java/
https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/

TYPES OF OPERATOR
Java provides many types of operators which can be used according to the need. They are classified based on the

functionality they provide. Some of the types are-

1. Arithmetic Operators

2. Unary Operators

3. Assignment Operator

4. Relational Operators

5. Logical Operators

https://www.geeksforgeeks.org/operators-in-java/#Arithmetic%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Unary%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Assignment%20Operator
https://www.geeksforgeeks.org/operators-in-java/#Relational%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Logical%20Operators

Arithmetic Operators: They are used to perform simple arithmetic operations on primitive data types.

● * : Multiplication

● / : Division

● % : Modulo

● + : Addition

● – : Subtraction

❖ Unary Operators: Unary operators need only one operand. They are used to increment, decrement or negate a
value.
❖ – :Unary minus, used for negating the values.

❖ + :Unary plus, used for giving positive values. Only used when deliberately converting a negative value

to positive.

❖ ++ :Increment operator, used for incrementing the value by 1. There are two varieties of increment

operator.

➢ Post-Increment : Value is first used for computing the result and then incremented.

➢ Pre-Increment : Value is incremented first and then result is computed.

❖ — : Decrement operator, used for decrementing the value by 1. There are two varieties of decrement

operator.

➢ Post-decrement : Value is first used for computing the result and then decremented.

➢ Pre-Decrement : Value is decremented first and then result is computed.

❖ ! : Logical not operator, used for inverting a boolean value.

PRECEDENCE AND ASSOCIATIVITY OF OPERATORS
Precedence and associative rules are used when dealing with hybrid equations involving more than

one type of operator. In such cases, these rules determine which part of the equation to consider first

as there can be many different valuations for the same equation. The below table depicts the

precedence of operators in decreasing order as magnitude with the top representing the highest

precedence and bottom shows the lowest precedence.

Precedence and Associativity:

There is often a confusion when it
comes to hybrid equations that is
equations having multiple
operators. The problem is which
part to solve first. There is a
golden rule to follow in these
situations. If the operators have
different precedence, solve the
higher precedence first. If they
have same precedence, solve
according to associativity, that is
either from right to left or from
left to right.

JAVA TYPE CASTING

Type casting is when you assign a value of one primitive data type to another type.

In Java, there are two types of casting:

● Widening Casting (automatically) - converting a smaller type to a larger type size
byte -> short -> char -> int -> long -> float -> double

● Narrowing Casting (manually) - converting a larger type to a smaller size type
double -> float -> long -> int -> char -> short -> byte

WINDENING CASTING
Widening casting is done automatically when passing a smaller size type to a larger size type:

Example

public class MyClass {

 public static void main(String[] args) {

 int myInt = 9;

 double myDouble = myInt; // Automatic casting: int to double

 System.out.println(myInt); // Outputs 9

 System.out.println(myDouble); // Outputs 9.0

 }

}

NARROWING CASTING
Narrowing casting must be done manually by placing the type in parentheses in front of the value:

Example

public class MyClass {

 public static void main(String[] args) {

 double myDouble = 9.78;

 int myInt = (int) myDouble; // Manual casting: double to int

 System.out.println(myDouble); // Outputs 9.78

 System.out.println(myInt); // Outputs 9

}

 }

