
CHAPTER 10
LIST, STACKS, QUEUES AND PRIORITY QUEUES

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

COLLECTION OVERVIEW

● The Collection in Java is a framework that provides an architecture to store and
manipulate the group of objects.

● Java Collections can achieve all the operations that you perform on a data such as
searching, sorting, insertion, manipulation, and deletion.

● Java Collection means a single unit of objects. Java Collection framework provides
many interfaces (Set, List, Queue, Deque) and classes (ArrayList, Vector, LinkedList,
PriorityQueue, HashSet, LinkedHashSet, TreeSet).

https://www.javatpoint.com/java-arraylist
https://www.javatpoint.com/java-linkedlist
https://www.javatpoint.com/java-priorityqueue

WHAT IS A COLLECTION FRAMEWORK?

The Collection framework represents a unified architecture for storing and manipulating a
group of objects. It has:

1. Interfaces and its implementations, i.e., classes

2. Algorithm

HIERARCHY OF COLLECTION FRAMEWORK

METHODS OF COLLECTION INTERFACE
No. Method Description

1 public boolean add(E e) It is used to insert an element in this collection.

2 public boolean

addAll(Collection<?

extends E> c)

It is used to insert the specified collection elements in the

invoking collection.

3 public boolean

remove(Object element)

It is used to delete an element from the collection.

4 public boolean

removeAll(Collection<?>

c)

It is used to delete all the elements of the specified

collection from the invoking collection.

5 default boolean

removeIf(Predicate<? super

E> filter)

It is used to delete all the elements of the collection that satisfy

the specified predicate.

6 public boolean

retainAll(Collection<?> c)

It is used to delete all the elements of invoking collection

except the specified collection.

7 public int size() It returns the total number of elements in the collection.

8 public void clear() It removes the total number of elements from the collection.

9 public boolean

contains(Object element)

It is used to search an element.

10 public boolean

containsAll(Collection<?>

c)

It is used to search the specified collection in the collection.

11 public Iterator iterator() It returns an iterator.

12 public Object[] toArray() It converts collection into array.

13 public <T> T[] toArray(T[] a) It converts collection into array. Here, the runtime type of the returned array is that of

the specified array.

14 public boolean isEmpty() It checks if collection is empty.

15 default Stream<E> parallelStream() It returns a possibly parallel Stream with the collection as its source.

16 default Stream<E> stream() It returns a sequential Stream with the collection as its source.

17 default Spliterator<E> spliterator() It generates a Spliterator over the specified elements in the collection.

18 public boolean equals(Object element) It matches two collections.

19 public int hashCode() It returns the hash code number of the collection.

LIST INTERFACE

List Interface is the subinterface of Collection. It contains index-based methods to insert
and delete elements. It is a factory of ListIterator interface.

List Interface declaration

public interface List<E> extends Collection<E>

SET INTERFACE

The set interface is used to define the set of elements.It extends the
collection interface.This interface defined unique elements.hence if
any duplicate elements in tried to insert in the set then the add()
method return itself.

SORTEDSET INTERFACE

● A set is used to provide a particular ordering on its element. The elements are ordered
either by using a natural ordering or by using a Comparator. All the elements which
are inserted into a sorted set must implement the Comparable interface.

● The set's iterator will traverse the set in an ascending order. Several other operations
are provided in order to make best use of ordering. All the elements must be mutually
comparable.

MAP INTERFACE

This interface maps a unique key elements to the value.Thus map interface represent a key
value pair.

SORTEDMAP INTERFACE

The SORTEDMAP is inherited from the Map interface.In this interface the elements are
stored in ascending order.This Stored order is based on the key.

ITERATORS

An iterator is an interface that is used in place of Enumerations in the Java Collection
Framework. Moreover, an iterator differs from the enumerations in two ways:

1. Iterator permits the caller to remove the given elements from the specified collection

during the iteration of the elements.

2. Method names have been enhanced.

Iterator interface is a member connected with Java Collections Framework.

Methods

THE COMPARABLE INTERFACE

● The comparable interface is used to compare two objects of two different classes
● This interface is present in java.util.* package
● This interface defines two methods -

1.Compare()

2.equals()

SYNTAX:

public void sort(List list,Comparator c)

Method Description

Int Compare(Object obj1,Object obj2) This method compares obj1 and obj2.It
returns 0 if these objects are equal.It
returns positive value if obj1>obj2.It returns
negative if obj1<obj2

boolean equals(Object obj) The object is tested for equality.This
method returns the true object and the
invoking object are both Comparator
objects and use the same ordering

LISTS

List interface is the child interface of Collection interface. It inhibits a list type data structure in which we can store
the ordered collection of objects. It can have duplicate values.

List interface is implemented by the classes ArrayList, LinkedList, Vector, and Stack.

To instantiate the List interface, we must use :

1. List <data-type> list1= new ArrayList();

2. List <data-type> list2 = new LinkedList();

3. List <data-type> list3 = new Vector();

4. List <data-type> list4 = new Stack();

There are various methods in List interface that can be used to insert, delete, and access the elements from the list.

ARRAYLIST

The ArrayList class implements the List interface. It uses a dynamic array to store the
duplicate element of different data types.

The ArrayList class maintains the insertion order and is non-synchronized. The elements
stored in the ArrayList class can be randomly accessed.

LINKEDLIST

Java LinkedList class uses a doubly linked list to store the elements. It provides a linked-list data structure. It inherits
the AbstractList class and implements List and Deque interfaces.

The important points about Java LinkedList are:

● Java LinkedList class can contain duplicate elements.

● Java LinkedList class maintains insertion order.

● Java LinkedList class is non synchronized.

● In Java LinkedList class, manipulation is fast because no shifting needs to occur.

● Java LinkedList class can be used as a list, stack or queue.

Static Methods for List and Collections

Collection class contains static methods to perform common operations in collection and a
list.

Static Methods for List

Method Description

Void sort(List list) Sort the given list

void sort(List list,Comparator c) Sorts the given list with the Comparator

Int BinarySearch(List list,Object key) Searches the key in the given list using
binary search

void reverse(List list) Reverse the given list.

void shuffle(List list) Shuffle the specified list randomly

void copy(List dest,List src) Copies the source list to a destination list

Void fill(List list,Object obj) Fills the list with object.

Static Methods for Collection

Method Description

Object max(Collection c) This method returns the max object in collection.

Object max(Collection c,Comparator cm) This method returns the max object in collection
using Comparator.

Object min(Collection c) This method returns the min object in collection.

Object min(Collection c,Comparator cm) This method returns the minobject in collection
using Comparator.

boolean disjoint(Collection c1,Collection c2) This function returns true if c1 and c2 have no
element in common.

int frequency(Collection c,Object o) It returns number of occurrences of specificied
element in the collection

VECTOR

Java Vector class comes under the java.util package. The vector class implements a growable array of objects. Like an array, it contains
the component that can be accessed using an integer index.

Vector is very useful if we don't know the size of an array in advance or we need one that can change the size over the lifetime of a
program.

Vector implements a dynamic array that means it can grow or shrink as required. It is similar to the ArrayList, but with two differences-

● Vector is synchronized.

● The vector contains many legacy methods that are not the part of a collections framework

Java Vector Class Declaration
1. public class Vector<E>

2. extends Object<E>

3. implements List<E>, Cloneable, Serializable

Methods used in Vector:
1. void addElement(Object element): It inserts the element at the end of the Vector.
2. int capacity(): This method returns the current capacity of the vector.
3. int size(): It returns the current size of the vector.
4. void setSize(int size): It changes the existing size with the specified size.
5. boolean contains(Object element): This method checks whether the specified

element is present in the Vector. If the element is been found it returns true else false.
6. boolean containsAll(Collection c): It returns true if all the elements of collection c

are present in the Vector.
7. Object elementAt(int index): It returns the element present at the specified location

in Vector.

Methods used in vector

1. Object first Element(): It is used for getting the first element of the vector.
2. Object lastElement(): Returns the last element of the array.
3. Object get(int index): Returns the element at the specified index.
4. boolean isEmpty(): This method returns true if Vector doesn’t have any element.
5. boolean removeElement(Object element): Removes the specified element from

vector.
6. boolean removeAll(Collection c): It Removes all those elements from vector

which are present in the Collection c.
7. void setElementAt(Object element, int index): It updates the element of

specified index with the given element.

STACK

Java Stack is LIFO object. It extends Vector class but supports only five operations. Java Stack class has only one constructor which is

empty or default constructor. So, when we create a Stack, initially it contains no items that mean Stack is empty.

Stack internally has a pointer: TOP, which refers to the top of the Stack element. If Stack is empty, TOP refers to the before first element

location. If Stack is not empty, TOP refers to the top element.

Methods used in Stack

Method Description

boolean empty() If the stack is empty then it returns true
ow it returns false

Object peek() The element present at the top of the
stack is simply displayed

object push(object ele) This method is useful for pushing the
element onto the stack

object pop() This method is remove the element
present at the top of the stack

int search(object ele) The desired element can be searched
using this method.

QUEUES

A Queue is designed in such a way so that
the elements added to it are placed at the end
of Queue and removed from the beginning of
Queue. The concept here is similar to the
queue we see in our daily life,

for example, when a new iPhone launches we
stand in a queue outside the apple store,
whoever is added to the queue has to stand at
the end of it and persons are served on the
basis of FIFO (First In First Out), The one
who gets the iPhone is removed from the
beginning of the queue.

Methods used in Queues

1. boolean add(E e): This method adds the specified element at the end of Queue. Returns true if
the the element is added successfully or false if the element is not added that basically happens
when the Queue is at its max capacity and cannot take any more elements.

2. E element(): This method returns the head (the first element) of the Queue.
3. boolean offer(object): This is same as add() method.
4. E remove(): This method removes the head(first element) of the Queue and returns its value.
5. E poll(): This method is almost same as remove() method. The only difference between poll()

and remove() is that poll() method returns null if the Queue is empty.
6. E peek(): This method is almost same as element() method. The only difference between peek()

and element() is that peek() method returns null if the Queue is empty.

PRIORITY QUEUES

we have seen how a Queue serves the requests based on FIFO(First in First out). Now the
question is: What if we want to serve the request based on the priority rather than
FIFO? In a practical scenario this type of solution would be preferred as it is more
dynamic and efficient in nature. This can be done with the help of PriorityQueue, which
serves the request based on the priority that we set using Comparator.

https://beginnersbook.com/2017/08/comparator-interface-in-java/

