
CHAPTER 12
CONCURRENCY

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

INTRODUCTION TO THREAD:
A thread is a:

➔ Facility to allow multiple activities within a single process
➔ Referred as lightweight process
➔ A thread is a series of executed statements
➔ Each thread has its own program counter, stack and local variables
➔ A thread is a nested sequence of method calls
➔ Its shares memory, files and per-process state

What’s the need of a thread or why we use Threads?

● To perform asynchronous or background processing
● Increases the responsiveness of GUI applications
● Take advantage of multiprocessor systems
● Simplify program logic when there are multiple independent entities

What happens when a thread is invoked?

When a thread is invoked, there will be two paths of execution. One path will execute
the thread and the other path will follow the statement after the thread invocation.
There will be a separate stack and memory space for each thread.

THREAD VS PROCESS

➔ Thread is a light weight
process

➔ Threads do not require
separate address space for
its exceution.it runs the
address space of the
process to which it belongs
to

➔ Process is heavy weighted
process

➔ Each process requires
separate address space to
execute

DIFFERENCE BETWEEN MULTITHREADING AND MULTITASKING

THREAD STATES AND LIFE CYCLE
➔ The start method creates the system resources, necessary to run the

thread, schedules the thread to run, and calls the thread’s run
method.

➔ A thread becomes “Not Runnable” when one of these events
occurs:

◆ If sleep method is invoked.
◆ The thread calls the wait method.
◆ The thread is blocking on I/O.

➔ A thread dies naturally when the run method exits.

1) New

The thread is in new state if you create an instance of Thread class but before the invocation of start() method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the thread scheduler has not selected it to be the running thread.

3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

CREATION OF THREAD

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Public void run()

{

//statements to implements thread

}

EXTENDING THREAD CLASS
● The class should extend Java Thread class.
● The class should override the run() method.
● The functionality that is expected by the Thread to be executed is written

in the run() method.

void start(): Creates a new thread and makes it runnable.

void run(): The new thread begins its life inside this method.

CONSTRUCTORS USED IN THREAD CLASS

● Thread()

● Thread(String name)

● Thread(Runnable r)

● Thread(Runnable r,String name)

METHOD NAMES:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily

cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

IMPLEMENTING RUNNABLE INTERFACE
● The class should implement the Runnable interface
● The class should implement the run() method in the Runnable

interface
● The functionality that is expected by the Thread to be executed

is put in the run() method

CREATING MULTIPLE THREADS

● The multiple threads can be created both by
extending thread class and by implementing the
runnable interface.

CREATING AND EXECUTING THREADS WITH THE
EXECUTOR FRAMEWORK

● Java thread pool manages the pool of worker threads. It contains a queue that keeps tasks waiting to

get executed. We can use ThreadPoolExecutor to create thread pool in Java.

● Java thread pool manages the collection of Runnable threads. The worker threads execute Runnable

threads from the queue. java.util.concurrent.Executors provide factory and support methods for

java.util.concurrent.Executor interface to create the thread pool in java.

● Executors is a utility class that also provides useful methods to work with ExecutorService,

ScheduledExecutorService, ThreadFactory, and Callable classes through various factory methods.

https://www.journaldev.com/1079/multithreading-in-java

Steps to be followed
1. Create a task(Runnable
Object) to execute

2. Create Executor Pool
using Executors

3. Pass tasks to Executor
Pool

4. Shutdown the Executor
Pool

THREAD SYNCHRONIZATION
➔ In many cases concurrently running threads share data and two threads

try to do operations on the same variables at the same time. This often
results in corrupt data as two threads try to operate on the same data.

➔ A popular solution is to provide some kind of lock primitive. Only one
thread can acquire a particular lock at any particular time. This can be
achieved by using a keyword “synchronized” .

➔ By using the synchronize only one thread can access the method at a time
and a second call will be blocked until the first call returns or wait() is
called inside the synchronized method.

Using Synchronized Method

Using Synchronized Block

