AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CHAPTER 12

ThreadLocal
sleep() and wait()

fail-safe sgnchronxzahon

Coﬁ;?e?;&lseervlce ConcurrenIHas:;m:; Con Cur r en C
ConcurrenTModlflcahonExcephon

() public Thread QEEREC)
Callable Immulabilily Atomic classes

thread
HashMap ; Java Concurrency

SUBJECT:00P-1 PREPARED BY:
CODE:3140705 ASST.PROF.NENSI KANSAGARA !&Mﬂ!ﬂﬁ “'cﬂ‘m]g
(CSE DEPARTMENT,ACET)

new Thread

aturn thread

INTRODUCTION TO THREAD:

A thread is a:

Facility to allow multiple activities within a single process
Referred as lightweight process

A thread is a series of executed statements

Each thread has its own program counter, stack and local variables
A thread is a nested sequence of method calls

S 200 0 N

Its shares memory, files and per-process state

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

What’s the need of a thread or why we use Threads?

To perform asynchronous or background processing
Increases the responsiveness of GUI applications
Take advantage of multiprocessor systems

Simplify program logic when there are multiple independent entities

What happens when a thread is invoked?

When a thread is invoked, there will be two paths of execution. One path will execute
the thread and the other path will follow the statement after the thread invocation.
There will be a separate stack and memory space for each thread.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

THREAD VS PROCESS

=> Thread 1s a light weight => Process i1s heavy weighted
process process

=> Threads do not require => Each process requires
separate address space for separate address space to
its exceution.it runs the execute

address space of the
process to which it belongs

to AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

DIFFERENCE BETWEEN MULTITHREADING AND MULTITASKING

BASIS FOR
COMPARISON

Basic

Execution

Creation

Classification

MULTIPROCESSING

Multiprocessing adds
CPUs to increase

computing power.

Multiple processes are

executed concurrently.

Creation of a process is
time-consuming and

resource intensive.

Multiprocessing can be
symmetric or

asymmetric.

MULTITHREADING

Multithreading creates multiple
threads of a single process to

increase computing power.

Multiple threads of a single
process are executed

concurrently.

Creation of a thread is
eccnomical in both sense time

and rescurce.

Multithreading is not classified.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CPU

CPU

CPU

: Responding
rapite [to KeystrokesJ

ramma
Check

Register Register Register
| | |
Cache Cache Cache
Memory

Multiprocessing

Thread Thread Thread
Word Processor]
CPU
Multithreading

THREAD STATES AND LIFE CYCLE

=> The start method creates the system resources, necessary to run the
thread, schedules the thread to run, and calls the thread’s run
method.
=> A thread becomes “Not Runnable” when one of these events
occurs:
€ Ifsleep method is invoked.
@ The thread calls the wait method.
€ The thread is blocking on I/O.
=> A thread dies naturally when the run method exits. AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

start() sleep() done, 1/o

complete, lock available,
resume(), notify() or notifyAll()

Runnable
Non Runnable

(Blocked)

run() method sleep(), block on 1/0, wait
exits ‘ for lock, suspend(), wait()

or stop()

Terminated

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

stt()

Object.notify() Or
Object.notifyAll()

Object.notify() Or Sleeping
Object.notifyAll()

Chosen by

ready-to-run Thread.sleep();
Scheduler swap Or / Object.wait()
stop(), o1 Thead.yield); g
runy) exits

Blocks for ¥0 Or
Erders syncronized code,

@ Another thread coses 10 socket

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

1) New

The thread is in new state if you create an instance of Thread class but before the invocation of start() method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the thread scheduler has not selected it to be the running thread.
3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CREATION OF THREAD

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Public void run()

{

//statements to implements thread

b

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

EXTENDING THREAD CLASS

e The class should extend Java Thread class.

e The class should override the run() method.

e The functionality that 1s expected by the Thread to be executed is written
in the run() method.

void start(): Creates a new thread and makes it runnable.

void run(): The new thread begins its life inside this method.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CONSTRUCTORS USED IN THREAD CLASS

e Thread()
e Thread(String name)
e Thread(Runnable r)

e Thread(Runnable r,String name)

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

METHOD NAMES:

(OV)

© © N o v »

public void run(): is used to perform action for a thread.

public void start(): starts the execution of the thread.JVM calls the run() method on the thread.
public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number of milliseconds.

public void join(): waits for a thread to die.

public void join(long miliseconds): waits for a thread to die for the specified miliseconds.
public int getPriority(): returns the priority of the thread.

public int setPriority(int priority): changes the priority of the thread.

public String getName(): returns the name of the thread. " M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY
public void setName(String name): changes the name of the thread.

public class MyThread extends Thread {
public void run(){
System.out.println("thread is running...");
}
public static void main(String[] args) {
MyThread obj = new MyThread();
obj.start();

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

IMPLEMENTING RUNNABLE INTERFACE

e The class should implement the Runnable interface

e The class should implement the run() method in the Runnable
interface

e The functionality that 1s expected by the Thread to be executed
1s put in the run() method

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

public class MyThread implements Runnable {
public void run(){
System.out.println("thread is running..");
}
public static void main(String[] args) {
Thread t = new Thread(new MyThread());
t.start();

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CREATING MULTIPLE THREADS

e The multiple threads can be created both by
extending thread class and by implementing the
runnable interface.

AMIRAJ

TECHNOLOGY

package javaapplicationthreadprog:

Output - JavaApplicationThreadProg (run) X

class A extends Thread
{ run:
pubklic wvoid run/() 0
{

for (int i=0;i<5;i++)

{

(o8]

System.ocut.println (i)

}
class B extends Thread

{
pubklic wvoid run()
{

oy o =3 OO WO

for(int i=10;i>=5;i--)

{

Syaien-aat paniaih BUILD SUCCESSFUL (total time: 9 seconds)

puklic class JavaApplicationThreadProg {

pubklic static wvoid main(String[] args) {

e eomm B ’\MIR‘\J
B t2 = new B():
tl.starct ()’ COLLEGE OF ENGINEERING & TECHNOLOGY

t2.staxrtc ()

package javaapplicationthreadprog;
class A implements Runnable
{
public void run()
{
for(int i=0;i<5;i++)
{
System.out.printlin(i);

}
class B implements Runnable

{
public void run()
{
for (int i=10;i>=5;i--)
{
System.out.println(i);
}
}
}

public class JavaApplicationThreadProg {

public static void main(String[] args)
A objl = new A():
B obj2 = new B():
Thread tl = new Thread(objl):
Thread t2 = new Thread(obj2):;
tl.start():
t2.start():

{

QOutput - JavaApplicationThreadProg (run) X

un:

0

o> —

SN Y

ay o =3 0O WO

BUILD SUCCESSFUL (total time: 9 seconds)

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CREATING AND EXECUTING THREADS WITH THE
EXECUTOR FRAMEWORK

® Java thread pool manages the pool of worker threads. It contains a queue that keeps tasks waiting to

get executed. We can use ThreadPoolExecutor to create thread pool in Java.

e Java thread pool manages the collection of Runnable threads. The worker threads execute Runnable
threads from the queue. java.util.concurrent.Executors provide factory and support methods for
java.util.concurrent.Executor interface to create the thread pool in java.

e Executors is a utility class that also provides useful methods to work with ExecutorService,

ScheduledExecutorService, ThreadFactory, and Callable classes through various factory methods.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.journaldev.com/1079/multithreading-in-java

Steps to be followed
1. Create a task(Runnable
Object) to execute

2. Create Executor Pool
using Executors

3. Pass tasks to Executor
Pool

4. Shutdown the Executor
Pool

Thread Pool

Thread Queue

Thread 1
Idle

Thread 2
Idle

Thread 3
Idle

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

package javaapplicationexceutordemo;

import java.util.concurrent.ThreadPoolExecutor;
import java.util.logging.Level;
import java.util.logging.Logger;

class Task implements Runnable
{
String Name;
public Task(String Name)
{
this.Name=Name;
}
public String getName ()
{
return Name;
}
public void run()
{

try{
System.out.println("Executing "+Name);
tryd

Thread.sleep(10000);
} catch (InterruptedException ex) {

’ AMIRAJ

) COLLEGE OF ENGINEERING & TECHNOLOGY

pubklic class JavaApplicationExceutorDemo {

public static void main(String[] args) {
ThreadPoolExecutor executor = (ThreadPoolExecutor)Exceutors.newvFixedThreadPool(2):
for(int i=1;i<=5;i++)
{

Task task = new Task("T
System.out.println("Cx
executor.execute (task);

ask#"+i);
d:"+task.getName ())

}
executor.shutdown () ;

private static class Exceutors {

public Exceutors() {
}

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

THREAD SYNCHRONIZATION

=> In many cases concurrently running threads share data and two threads
try to do operations on the same variables at the same time. This often
results in corrupt data as two threads try to operate on the same data.

=> A popular solution is to provide some kind of lock primitive. Only one
thread can acquire a particular lock at any particular time. This can be
achieved by using a keyword “synchronized™ .

=> By using the synchronize only one thread can access the method at a time
and a second call will be blocked until the first call returns or wait() is

called inside the synchronized method.)‘M I n AJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Using Synchronized Method

package javaapplicationmysynthread;
class Test
{
synchronized wvoid display (int num)
{
System.out.println("\nTable for"+num);
for(int i=1;i<=10;i++)
{

System.out.println("\nend of tabkle");

}

try
{Thread.sleesp(1000);}
catch (Exception g)

{}

}
class A extends Thread
{

Test thl;
A(Test t)
{

thl=t;

}
public void run()

{thl.display(2):}

class B extends Thread

{

}

Test th2;

B(Test t)
{

th2=t;
}

pubklic void run|()
{th2.display(100);}

puklic class JavaApplicationMySynThread {

public static void main(String[] args)
Test obj = new Test():
A tl = new A(obj):
B t2 = new B(obkj):
tl.start():
t2.starc();

Using Synchronized Block

package javaapplicationmysynthread;
class Test
{

void display (int num)

{

synchronized(this)

{

System.out.println("\nTakle for"+num);
for(int i=1;i<=10;i++)
{

System.out.println(""+num#*i) ;

}

System.out.println ("\nEnd
try

{Thread.slesp(1000);}
catch (Exception e)

{}

}

class A extends Thread
{
Test thl;

A(Test t)
{

thl=t;
}

public void run()
{thl.display(2):}

class B extends Thread

{

}

Test th2;
B(Test t)

public void run()
th2.display(100);}

pubklic class JavaApplicationMySynThread {

public static void main(String[] args)
Test obj = new Test():
A tl = new A(obj):
B t2 = new B(obj):
tl.start():
t2.start():

{

IGY

oﬂl/

AMIRAJ

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

A ?

