AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY
CHAPTER 5

OBJECT ORIENTED THINKING

eeeeee al -
fl" ;:\‘\ .
m :
=4 Multileve 13 s m ((
Y, \ \ § - ? ‘E_:)
| z - & + + . J a V a

z | INHERITANCE *I : P0|y.m0rphism
] Java String \ | Hybrid :)—‘l Hierarchical @ . in Java
SUBJECT:00P-1 PREPARED BY: '\M I R '\
CODE:3140705 ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET) COLLEGE OF ENGINEERING & TECHNOLOGY

PART |
CONCEPT OF
CLASS AND
OBJECT

AMIRAJ

OOPs (Object-Oriented Programming System)

Abstraction

Encapsulation

Polymorphism

Inheritance

Class

AMIRAJ

Object COLLEGE OF ENGINEERING & TECHNOLOGY

CLASS ABSTRACTION

R/
£ %4

K/
L X4

Abstraction is the quality of dealing with ideas rather than events. For example,
when you consider the case of e-mail, complex details such as what happens as
soon as you send an e-mail, the protocol your e-mail server uses are hidden from
the user. Therefore, to send an e-mail you just need to type the content, mention
the address of the receiver, and click send.

Likewise in Object-oriented programming, abstraction is a process of hiding the
implementation details from the user, only the functionality will be provided to
the user. In other words, the user will have the information on what the object

does instead of how it does it. '\M I R '\ J

COLLEGE OF ENGINEERING & TECHNOLOGY

ENCAPSULATION

Encapsulation is one of the four fundamental OOP concepts. The other three are
inheritance, polymorphism, and abstraction.

Encapsulation in Java is a mechanism for wrapping the data (variables) and code
acting on the data (methods) together as a single unit. In encapsulation, the variables
of a class will be hidden from other classes and can be accessed only through the
methods of their current class. Therefore, it is also known as data hiding.

To achieve encapsulation in Java —

> Declare the variables of a class as private.

> Provide public setter and getter methods to modify and view the variables values.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Shape (Abstract Class)

colorOfShape() : String
abstract area() : double
abstract toString() : String
getColorOfShape() : String

Rectangle (Concrete Class)

lengthOfRectangle() : double
widthOfRectangle() : double

variables variables

Encapsulation

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

THINKING OF
OBJECTS

The object oriented
Programming Language
1s based upon the concept
of “objects”, which
contains data as attributes
in methods. Every object
in Java has state and
behavior which are
represented by instance
variables and methods. ..
Here method is using
instance variable values.

Name

| / Attributes
Name .

Name
Attributes Behaviors oM
Attributes

' Behaviors ' —
Behaviors
\ messages

Name / Name
Attributes Attributes -
Behaviors Behaviors

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CLASS RELATIONSHIPS

/
L X4

K/
%

K/
L %4

Association is relation between two
separate classes which establishes through
their Objects. Association can be
one-to-one, one-to-many, many-to-one,
many-to-many.

In Object-Oriented programming, an
Object communicates to other Object to
use functionality and services provided by
that object. Composition and Aggregation
are the two forms of association.

It is a special form of Association where:
> It represents Has-A relationship.

Association

Aggregation

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

R/
L X g

7
L. %4

It is a unidirectional
association i.e. a one way
relationship. For example,
department can have students
but vice versa is not possible
and thus unidirectional in
nature.

In Aggregation, both the
entries can survive
individually which means
ending one entity will not

effect the other entity

BN

Association

Library

Passengers

L.

Books

Aggregation

0.*
Airplane
Directed Reflexive Multip"city
Asscoation Assciation
Library Fixed Account Printer
T T T
1
1
1
Books Bank Account Printer Setup
Composition Inheritance Realization

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

X/

% Composition is a restricted form of Aggregation in which two entities are highly

dependent on each other.

>

>

It represents part-of relationship.
In composition, both the entities are dependent on each other.
When there is a composition between two entities, the composed object

cannot exist without the other entity.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

PRIMITIVE DATATYPES

arrays

user defined

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

WRAPPER CLASS
TYPES

% A Wrapper class is a class Wrapper Class Hiera I"Chy

whose object wraps or
contains a primitive data
types. When we create an
object to a wrapper class, it

Boolean Character

contains a field and in this
field, we can store a
primitive data types. In other

words, we can wrap a

primitive value into a ‘\M I n ‘\J
wrapper class object.

COLLEGE OF ENGINEERING & TECHNOLOGY

NEED OF
WRAPPER CLASS

boolean Boolean
byte Byte
1. They convert primitive data types into objects. Objects are char - Character
needed if we wish to modify the arguments passed into a float Float
L int i [nteger
method (because primitive types are passed by value). §
o . _ long i Long
2. The classes in java.util package handles only objects and hence ot Short
wrapper classes help in this case also. double Double

3. Data structures in the Collection framework, such as ArrayList
and Vector, store only objects (reference types) and not
primitive types.

4. An object is needed to support synchronization in ‘\ M I R '\J

multithreading. COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

Advantages]of;
Wrapper{ClassjinlJava Serialization

Synchronization
java.util package
Collection Framework
Changing the value inside a Method

Polymorphism

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

AUTOBOXING | | Primitive types I
AND UNBOXING Int, long, float, double ~ i

< Autoboxing is the automatic
conversion that the Java
compiler makes between the

C e . Unboxing
primitive types and their Y Integer Long Floot’ Double

corresponding object wrapper
p g d pp I Wrapper classes I

classes. For example, converting

an int to an Integer, a double to a
Double, and so on. If the
conversion goes the other way,

this 1s called unboxing. ‘\M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY

BIGINTEGER CLASS

/
L X4

K/
%

Biglnteger class is used for mathematical operation which involves very big integer calculations
that are outside the limit of all available primitive data types.

For example factorial of 100 contains 158 digits in it so we can’t store it in any primitive data
type available. We can store as large Integer as we want in it. There is no theoretical limit on the
upper bound of the range because memory is allocated dynamically but practically as memory is

limited you can store a number which has Integer MAX VALUE number of bits in it which

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

should be sufficient to store mostly all large values.

// Java program to find large factorials using BigInteger
import java.math.BigInteger;
import java.util.Scanner;

public class Example

{

// Returns Factorial of N
static BigInteger factorial(int N)

{

// Initialize result
BigInteger f = new BigInteger("1"); // Or Biglnteger.ONE

// Multiply f with 2, 3, ...N Output:
for (int i = 2; i <= N; i++)
f = f.multiply(BigInteger.valueOf(i)); 2432902008176640000

return f;

¥

// Driver method
public static void main(String args[]) throws Exception

{
int N = 20;

System.out.println(factorial(N)); ‘\M I n ‘\J
h
¥

COLLEGE OF ENGINEERING & TECHNOLOGY

BIGDECIMAL CLASS

7/
X4

The BigDecimal class provides operations on double numbers for arithmetic,
scale handling, rounding, comparison, format conversion and hashing. It can
handle very large and very small floating point numbers with great precision
but compensating with the time complexity a bit.

A BigDecimal consists of a random precision integer unscaled value and a
32-bit integer scale. If greater than or equal to zero, the scale 1s the number of
digits to the right of the decimal point. If less than zero, the unscaled value of

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

the number 1s multiplied by 10”(-scale).

// Java Program to illustrate BigDecimal Class

import java.math.BigDecimal;
public class BigDecimalExample
{
public static void main(String[] args)
{
// Create two new BigDecimals
BigDecimal bdl =
new BigDecimal("124567899.8987654321");
BigDecimal bd2 =
new BigDecimal("987654321.123456789");

// Addition of two BigDecimals
bdl = bdl.add(bd2);
System.out.println("BigDecimall = " + bdl);

// Multiplication of two BigDecimals
bdl = bdl.multiply(bd2);
System.out.println("BigDecimall = " + bdl);

// Subtraction of two BigDecimals
bdl = bdl.subtract(bd2);
System.out.println("BigDecimall = " + bdl);

// Division of two BigDecimals
bdl = bdl.divide(bd2);
System.out.println("BigDecimall = " + bdl);

// BigDecimal raised to the power of 2
bdl = bdl.pow(2);
System.out.println{"BigDecimall = " + bdl);

// Negate value of BigDecimall
bdl = bdl.negate();
System.out.println("BigDecimall = " + bdl);

Output:-

BigDecimall
BigDecimzll
BigDecimazll
BigDecimall
BigDecimall
BigDecimzll

1112222211.2222222211
1093491072963113850.7436076939614548479
1098491071975459529.6201509049614548479
1112222219.2222222211
1237038244911605079.77528397755061728521
-12370@38244911685079.77528397755061728521

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

PART Il
STRINGS

AMIRAJ

STRING CLASS

°,
% InJava, a string is a sequence of characters. For example, "hello" is a string containing a sequence of

characters 'n', 'e', ', ', and ‘0.

»* Unlike other programming languages, strings in Java are not primitive types (like int, char, etc). Instead,
all strings are objects of a predefined class named String. For example,

»* Here, we have created a string named type. Here, we have initialized the string with "java programming”. In
Java, we use double quotes to represent a string.

%" The string is an instance of the String class.

COLLEGE OF ENGINEERING & TECHNOLOGY

STRING CLASS

METHODS OF JAVA STRING

; - String
char charAt ptring c.oncat bStn:mg . substring
(intindex) (St.rmg - s-trmg tint (int beginindex
string1) beginindex) 4

int endindex)

int compareTo
(String string1,
String string2)

String
toUpperCase()

String
toLowerCase()

Vidvan

. String replace
(char oldChar,
char newChar)

= AMIRAJ

N

COLLEGE OF ENGINEERING & TECHNOLOGY

Example 1: Java find string's length

class Main {
public static void main(String[] args) {

String greet = "Hello! World";

-]
System.out.println("The string is: " + greet);
System.out.println(”The length of the string: " + greet.length()):
¥
¥
Output

The string is: Hello! World
The length of the string: 12

COLLEGE OF ENGINEERING & TECHNOLOGY

Example 2: Java join two strings using concat()

class Main {
public static void main(String[] args) {

String greet = "Hello
System.out.println("First String: + greet);
String name = "World";
System.out.println("Second String: " + name);

String joinedString = greet.concat(name):
System.out.println(“Joined String: " + joinedString):;

—

Output

First String: Hello!
Second String: World
Joined S5tring: Hello! World

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Example 3: Java join strings using + operator

class Main
public static void main(String[] args) {

~

String
System.

String

System.

String
System.

Output

1

greet = "Hello! ";

out.println(”First String: + greet);
name = “World";

out.println(“Second String: " + name);
joinedString = greet + name;

out.println("Joined String: " + joinedString):

First String: Hello!
Second String: World
Joined String: Hello! World

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Example 4: Java compare two strings

class Main {
public static void main(String[] args) {

first = "java pro

String 3 ogramming";
String second = "java programming”;
String third = "python programming”;

boolean resultl = first.equals(second);
System.out.println("Strings Tirst and second are equal: " + resultl);

boolean result2 = first.equals(third):
System.out.println("Strings Tirst and third are equal: " + result2);

—

Output

Strings first and second are equal: true
Strings first and third are equal: false

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Example 5: Java get characters from a string

class Main {
public static void main(String[] args)

String greet = "Hello! World";
System.out.println(“The string is:

System.out.println("The character at

System.out.println("The character at 7: "

1.
J

¥

Output

The string is: Hello! World

The character at 3: 1
The character at 7: W

{

+

greet);

" + greet.charAt(3));

+ greet.charAt(7)):

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

STRINGBUILDER CLASS

% StringBuilder objects are like String objects, except that they can be modified. Hence Java StringBuilder class is also
used to create mutable (modifiable) string object. StringBuilder is same as StringBuffer except for one important
difference. StringBuilder is not synchronized, which means it is not thread safe. At any point, the length and content of
the sequence can be changed through method invocations.

% StringBuilder class provides an API compatible with StringBuffer, but with no guarantee of synchronization. This class
is designed for use as a drop-in replacement for StringBuffer in places where the string buffer was being used by a
single thread. Where possible, it is recommended that this class be used in preference to StringBuffer as it will be faster

under most implementations.

7
L X4

Instances of StringBuilder are not safe for use by multiple threads. If such synchronization is required then it is

recommended that StringBuffer be used. '\ M I R '\ J

COLLEGE OF ENGINEERING & TECHNOLOGY

CONSTRUCTOR'’'S OF STRINGBUILDER CLASS

¢ StringBuilder () : Constructs a string builder with no characters in it and an initial
capacity of 16 characters.

% StringBuilder (int capacity) : Constructs a string builder with no characters in it
and an initial capacity specified by the capacity argument.

% StringBuilder (String str) : Constructs a string builder initialized to the contents of

the specified string. The initial capacity of the string builder is 16 plus the length of

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

the string argument.

APPEND()

Y/
L X4

The append() method concatenates the
given argument(string representation)
to the end of the invoking StringBuilder
object. StringBuilder class has several
overloaded append() method. Few are:

> StringBuilder append(String str)

> StringBuilder append(int n)

> StringBuilder append(Object

obj)

StringBuilder strBuilder = new StringBuilder("

strBuilder.append(“Javaturu");

System.out.println(strBuilder);
strBuilder.append(191);
System.out.println(strBuilder);

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

INSERT()

7/

% The insert() method inserts the given argument(string representation) into the
invoking StringBuilder object at the given position.

StringBuilder strBuilder=new StringBuilder (

strBuilder.insert(,)

System.out.println(strBuilder);

Output:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

REPLACE

% The replace() method replaces the string from specified start index to the end
index.

StringBuilder strBuilder=new StringBuilder(

strBuilder.replace(2, 4, ava');

System.out.println(strBuilder);

OQutput:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

REVERSE()

¢ This method reverses the characters within a StringBuilder object.

StringBuilder strBuilder=new StringBuilder("C

strBuilder.reverse();
System.out.println(strBuilder);

Output:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CAPACITY()

% The capacity() method returns the current capacity of StringBuilder object. The capacity is the
amount of storage available for newly inserted characters, beyond which an allocation will occur

StringBuilder strBuilder=new StringBuilder();
System.out.println(strBuilder.capacity());
strBuilder.append(34");
System.out.println(strBuilder.capacity());
strBuilder.append(122 7891 s

System.out.println(strBuilder.capacity());
strBuilder.append();
System.out.println(strBuilder.capacity()); //(oldcapacity*2)+2

StringBuilder strBuilder2=new StringBuilder("1234");
System.out.println(strBuilder2.capacity());

Output:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

STRINGBUFFER CLASS

7
%*

0‘0

7/
°

K/
L X4

Java StringBuffer class is used to create mutable (modifiable) string object. A string buffer is like a
String, but can be modified.

As we know that String objects are immutable, so if we do a lot of modifications to String objects, we
may end up with a memory leak. To overcome this we use StringBuffer class.

StringBuffer class represents growable and writable character sequence. It is also thread-safe i.e.
multiple threads cannot access it simultaneously.

Every string buffer has a capacity. As long as the length of the character sequence contained in the

string buffer does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If

the internal buffer overflows, it is automatically made large '\ M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY

CONSTRUCTOR OF STRINGBUFFER CLASS

< StringBuffer () : Creates an empty string buffer with the initial capacity of 16.

< StringBuffer (int capacity) : Creates an empty string buffer with the specified
capacity as length.

< StringBuffer (String str) : Creates a string buffer initialized to the contents of

the specified string.

< StringBuffer (charSequence[] ch) : Creates a string buffer that contains the

same characters as the specified CharSequence. ‘\M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY

StringBuffer length() and capacity(
Methods

insert()

in Java

-
delete() and deleteCharAt() | reverse()

replace()

ensureCapacity()

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

APPEND()

% The append() method concatenates the given argument(string representation) to the end of the invoking StringBuffer

object. StringBuffer class has several overloaded append() method.
> StringBuffer append(String str)
> StringBuffer append(int n)
> StringBuffer append(Object obj)

StringBuffer strBuffer = new StringBuffer("C
strBuffer.append(”JavaG);

System.out.println(strBuffer);
strBuffer.append() -
System.out.println(strBuffer);

AMIRAJ

CoreJavaGuru
COLLEGE OF ENGINEERING & TECHNOLOGY

CorelavaGurulol

INSERT()

% The insert() method inserts the given argument(string representation) into the invoking
StringBuffer object at the given position.

StringBuffer strBuffer=new StringBuffer("C

strBuffer.insert(1,"J:)s

System.out.println(strBuffer);

Output:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

REPLACE()

7

% The replace() method replaces the string from specified start index to the end
index.

StringBuffer strBuffer=new StringBuffer(“Core");
strBuffer.replace(2, 4, "Java");

System.out.println(strBuffer);

Output:

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

REVERSE()

¢

% This method reverses the characters within a StringBuffer
object.

StringBuffer strBuffer=new StringBuffer(“Core™);
strBuffer.reverse();

System.out.println(strBuffer);

Output:

eroC

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CAPACITY()

% The capacity() method returns the current capacity of StringBuffer object. The capacity is
the amount of storage available for newly inserted characters, beyond which an allocation
will occur.

StringBuffer strBuffer=new StringBuffer();
System.out.println(strBuffer.capacity());
strBuffer.append(”1234");
System.out.println(strBuffer.capacity());
strBuffer.append(”1: 112");
System.out.println(strBuffer.capacity());
strBuffer.append(s
System.out.println(strBuffer.capacity()); //(oldcapacit

StringBuffer strBuffer2=new StringBuffer(

m.out.println(strBuffer2.capacity());

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

StringBuffer vs String

StringBuffer class
iIs mutable.

StringBuffer is fast and
consumes less memory

when you cancat strings.

StringBuffer class doesn't
override the equals() method
of Object class.

String class is
immutable.

String is slow and
consumes more memory
when you concat too many
strings because every
time it creates new instance.

String class overrides
the equals() method of
Object class. So you
can compare the contents
of two strings by equals()
method.

lé-Ol l?-é-?l

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

StringBuffer vs§

StringBuffer is synchronized i.e. thread
safe. It means two threads
can't call the methods of StringBuffer
simultaneously.

StringBuffer is less efficient
than StringBuilder.

StringBuilder

StringBuilder is non-synchronized i.e. not
thread safe. It means two threads
can call the methods of
StringBuilder simultaneously.

StringBuilder is more efficient
than StringBuffer.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

String StringBuffer [StringBuilder
Storage String pool Heap Heap
Modifiable No(immutable) [Yes (mutable) [Yes (mutable)
Thread safe |Yes Yes No
Synchronized |Yes Yes No
Performance |Fast Slow Fast

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

PART Ili
INHERITANCE
AND
POLYMORPHISM

AMIRAJ

SUPERCLASS AND SUBCLASS

Java Inheritance (Subclass ok
and Superclass) In Java, it is

possible to inherit attributes —

and methods from one class

to another. ... subclass (child) T
- the class that inherits from Fig
another class. superclass
(parent) - the class being

inherited from.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

DIFFERENCE BETWEEN SUPERCLASS & SUBCLASS

Superclass vs Subclass

When implementing inheritance, the existing When implementing inheritance, the class that
class from which the new classes are derived inherits the properties and methods from the
is the Superclass. Superclass is the Subclass.

Superclass is known as base class, parent

: Subclass is known as derived class, child class.
class.

Functionality

A superclass cannot use the properties and A subclass can use the properties and methods of
methods of the Subclass. the Superclass.

Single-Level-Inheritance

There is one Superclass. There is one Subclass.

Hierarchical Inheritance
There is one Superclass There are many Subclasses. ‘\M I n ‘\J

Multiple Inheritance COLLEGE OF ENGINEERING & TECHNOLOGY
There are many Superclasses. There is one Subclass.

TYPES OF INHERITANCE

a)si

ngle level

¢) Hierarchical

d) Multiple

dn o

b) Multi level

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

e) Hybrid

Behuss

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

/7
0‘0

L X4

According to the above diagrams, Superclasses varies from each inheritance type.
In single-level inheritance, A is the Superclass. In Multilevel inheritance, A is the
Superclass for B and B is the Superclass for C. In Hierarchical Inheritance A is the
Superclass for both B and C. In multiple inheritances both A and B are Superclasses
for C.

Hybrid inheritance is a combination of multi-level and multiple inheritances. In the
left-hand side diagram, A is the Superclass for B, C and B, C are the Superclasses

for D. In the right-hand side diagram, A is the Superclass for B and B, D are
Superclasses for C.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.differencebetween.com/difference-between-multiple-and-vs-multilevel-inheritance/

J) *SuperclassDemo.java 23

2 public class SuperclassDemo {
4 public static void main(String[] args) {
5 B obj= new B();
6 obj.multiply();
7 obj.sub();
3 cbj.sum();
9 }
11 class A{
12
134 public void sum(){
14 System.out.printin(“Susmation”);
15 }
17 public void sub(){
18 System.out.println("Substraction");
19 }
28}
121 class B extends A{
236 public void multiply(){
24 System.out.printin("Multiply™);
25 }
26
2k

Diffey=
Behust

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

According to the above program, class A have sum() and sub() methods. Class B
has multiply() method. Class B is extending class A. Therefore, properties and
methods of class A are accessible by class B. Therefore, class A is the Superclass.
The reference type of class B is taken to create the object. So, all methods such as
sum(), sub() and multiply() are accessible by the object. If Superclass reference
type 1s used for object creation, the members of class B cannot be accessible. e.g. A
obj = new B(); Therefore, Superclass reference cannot call the method multiply()
because that method belongs to class B.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

SUPER KEYWORD

7/
L X4

The super keyword in Java is a
reference variable which is used to
refer immediate parent class object.
Whenever you create the instance of
subclass, an instance of parent class
is created implicitly which is
referred by super reference
variable.

Usage of Super Keyword

Super can be used to
refer immediate parent class
instance variable.

super() can be used to invoke
immediate parent class
constructor.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

1) How to use super keyword to access the variables of parent class

¢ When you have a variable in child class which is already present in the
parent class then in order to access the variable of parent class, you need to
use the super keyword.

¢ By calling a variable like this, we can access the variable of parent class if

both the classes (parent and child) have same variable.

> super.variable name

% Let’s take the same example that we have seen above, this time in print

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

statement we are passing super.num instead of num.

class Superclass

{
int num = 1606;
}
class Subclass extends Superclass
{

int num = 110;
void printNumber(){
/* Note that instead of writing num we are
* writing super.num in the print statement
* this refers to the num variable of Superclass
=7
System.out.println(super.num);
b
public static void main(String args[]){
Subclass obj= new Subclass();
obj.printNumber();

Output:
100

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

2) Use of super keyword to invoke constructor of parent class

“* When we create the object of sub class, the new keyword invokes the
constructor of child class, which implicitly invokes the constructor of
parent class. So the order to execution when we create the object of
child class 1s: parent class constructor 1s executed first and then the
child class constructor is executed. It happens because compiler itself
adds super()(this invokes the no-arg constructor of parent class) as the

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

first statement in the constructor of child class.

https://beginnersbook.com/2013/03/constructors-in-java/

class Parentclass

{

}

Parentclass(){

System.out.println("Constructor of parent class");

class Subclass extends Parentclass

1

Subclass(){
/* Compile implicitly adds super() here as the
* first statement of this constructor.
o
System.out.println(“Constructor of child class");
¥
Subclass(int num){
/* Even though it is a parameterized constructor.
* The compiler still adds the no-arg super() here
%/
System.out.println("arg constructor of child class");
¥
void display(){
System.out.println("Hello!");

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

public static void main(String args[]){

/* Creating object using default constructor. This

* will invoke child class constructor, which will
* invoke parent class constructor
*/

Subclass obj= new Subclass();

//Calling sub class method

obj.display();

/* Creating second object using arg constructor
* it will invoke arg constructor of child class which will
* invoke no-arg constructor of parent class automatically
=]

Subclass obj2= new Subclass(10);

obj2.display();

Output:

Constructor of parent class

Constructor of child class

Hello!
Constructor of parent class

arg constructor of child class
COLLEGE OF ENGINEERING & TECHNOLOGY
Hello!

3) How to use super keyword in case of method overriding

% When a child class declares a same method which is already present in the parent class
then this is called method overriding. We will learn method overriding in the next tutorials
of this series. For now you just need to remember this: When a child class overrides a
method of parent class, then the call to the method from child class object always call the
child class version of the method. However by using super keyword like this:
super.method name you can call the method of parent class (the method which is
overridden). In case of method overriding, these terminologies are used: Overridden
method: The method of parent class Overriding method: The method of child class Lets

take an example to understand this concept:

COLLEGE OF ENGINEERING & TECHNOLOGY

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

class Parentclass

{
//Overridden method
void display(){

System.out.println("Parent class method");

b
b
class Subclass extends Parentclass
{

//Overriding method

void display(){
System.out.println("Child class method");

Iy

void printMsg(){
//This would call Overriding method
display();
//This would call Overridden method
super.display();

¥

public static void main(String args[]){
Subclass obj= new Subclass();

obj.printMsg();

AMIRAJ

Child class method COLLEGE OF ENGINEERING & TECHNOLOGY

Parent class method

OVERRIDING AND OVERLOADING METHOD

% Method overriding is used to provide the specific implementation of the method
that is already provided by its super class. ... In java, method overloading can't be
performed by changing return type of the method only. Return type can be same or
different in method overloading. But you must have to change the parameter.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

METHOD OVERLOADING

% Method overloading allows the method to have the same name which differs on the basis of
arguments or the argument types. It can be related to compile-time polymorphism. Following are
a few pointers that we have to keep in mind while overloading methods in Java.

> We cannot overload a return type.

> Although we can overload static methods, the arguments or input parameters have to be
different.

We cannot overload two methods if they only differ by a static keyword.

Like other static methods, the main() method can also be overloaded.

COLLEGE OF ENGINEERING & TECHNOLOGY

vV

https://www.edureka.co/blog/static-keyword-in-java/

. public class Edureka{
public static void main(String[] args){
System.out.println("hello");
Edureka.main("edurekan");

}

public static void main(String argl){ \ >2meChas
System.out.println(" welcome" + argl);
Edureka.main("welcome" , "to edureka");

}

public static void main(String argl , String arg2){
System.out.println("hello" , +argl , +arg2);

}

}

Method(x)

Method(x , y)

Method(x ,y, 2)
edureka!

Output: hello welcome edurekan

hello, welcome to edureka ‘\M I n‘\J

COLLEGE OF ENGINEERING & TECHNOLOGY

METHOD OVERRIDING

% Inheritance in java involves a relationship between parent and child classes. Whenever
both the classes contain methods with the same name and arguments or parameters it is
certain that one of the methods will override the other method during execution. The
method that will be executed depends on the object.

% If the child class object calls the method, the child class method will override the parent

class method. Otherwise, if the parent class object calls the method, the parent class

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

method will be executed.

class Parent{
void view(){
System.out.println("this is a parent class method);
1
class Child extends Parent{
void view(){
System.out.println("this is a child class method);
13
public static void main(String args[]){
Parent ob = new Parent();
ob.view();
| Parent obl = new Child();
3| obl.view();

Output: this is a child class method

Base Class

Method(x)

|

Derived Class

Method(x)

edureka!

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Method Overloading Method Overriding

e |tis used to increase the readability of the ¢ Provides a specific implementation of the
program method already in the parent class

e Itis performed within the same class e [tinvolves multiple classes

e Parameters must be different in case of e Parameters must be same in case of
overloading overriding

¢ |s an example of compile-time

polymorphism e Itis an example of runtime polymorphism

e Return type can be different but you must

e Return type must be same in overridin
change the parameters as well. oP &

e Static methods can be overloaded e Overriding does not involve static methods.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

POLYMORPHISM AND DYNAMIC BINDING

% Polymorphism in Java is a concept by

Types of Polymorphism

which we can perform a single action in

different ways. ... So polymorphism

means many forms. There are two types

of polymorphism in Java: '

)) a
compile-time polymorphism and SHpReThne fisiitime
. . Polymorphism Polymorphism
runtime polymorphism. We can perform ,
(Static or Early Binding) (Dynamic or Late Binding)

polymorphism in java by method
overloading and method overriding.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Runtime Polymorphism example:
Animal.java

public class Animal{
public void sound(){

System.out.println("Animal is making a sound");

Horse.java

class Horse extends Animal{
@0verride
public void sound(){
System.out.println("Neigh");
¥
public static void main(String args[]){
Animal obj = new Horse();

obj.sound();

AMIRAJ

— COLLEGE OF ENGINEERING & TECHNOLOGY

DYNAMIC METHOD DISPATCH

% Dynamic method dispatch is a Parent = - = -

mechanism by which a call to et p=now Farent(.),
. . extends

an overridden method is Child ¢ = new Child();
resolved at runtime. This is how ’
. . Child Parent P =new Chlld();
java implements runtime
polymorphism. When an Upcastlng

overridden method is called by Child cx=1iew Parent();

a reference, java determines incompatible type

which version of that method

to execute based on the type of ‘\M I R '\J
object it refer to.

COLLEGE OF ENGINEERING & TECHNOLOGY

DYNAMIC BINDING

% When compiler is not able to resolve
the call/binding at compile time, such
binding is known as Dynamic or late
Binding. Method Overriding is a perfe
example of dynamic binding as in
overriding both parent and child classe
have same method and in this case the
type of the object determines which
method is to be executed. The type of
object is determined at the run time so
this is known as dynamic binding.

Static vs Dynamic Binding

When type of the object is
determined at compiled time,
it is known as static binding.

Static
Binding

When type of the object is
determined at run-time, it is
known as dynamic binding.

Dynamic
Binding

niii I“\J

COLLEGE OF ENGINEERING & TECHNOLOGY

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

class Human{
//Overridden Method
public void walk()
{

System.out.println("Human walks™);

¥

class Demo extends Human{
//Overriding Method
public void walk(){
System.out.println("Boy walks");
i
public static void main(String args[]) {
/* Reference is of Human type and object is
* Boy type
+/
Human obj = new Demo();
/* Reference is of HUman type and object is
* of Human type.
=7
Human obj2 = new Human();
obj.walk();
obj2.walk();

AMIRAJ

Boy walks COLLEGE OF ENGINEERING & TECHNOLOGY

Human walks

S Dynamic Binding

Dynamic Binding is also called as
e Late Binding
yA Binding takes place at the run time
3 Dynamic binding uses Overriding
Method.
Real object used in the Dynamic
4 s
Binding.

Dynamic Binding can be achieved
using the virtual functions

binding

G Static Binding is also calle&na&s i

Static Binding uses O—verloading/
Operator Overloading Method .

Real object is never used in Static

° Binding.

i

Static Binding can take place using
normal functions

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CASTING OBJECTS

¢ A cast, instructs the compiler to change the existing type of an object reference to

another type.

K/
%

In Java, all casting will be checked both during compilation and during execution to
ensure that they are legitimate.

% An attempt to cast an object to an incompatible object at runtime will results in a

ClassCastException.

X/
A X4

A cast can be used to narrow or downcast the type of a reference to make it more

et AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

class Animal {
@override
public String toString() {
return "I am an Animal";
¥
¥

class Cow extends Animal {
@override
public String toString() {
return "I am a Cow";
}
¥

public class ObjectCasting {
public static void main(String args[]) {
Animal creature;
Cow daisy = new Cow();
System.out.println(daisy); // prints: I am a Cow
creature = daisy; // 0K
System.out.printin{creature); // prints: I am a Cow
creature = new Animal();
System.out.println(creature); // prints: I am a Animal
// daisy = creature; // Compile-time error, incompatible type
if (creature instanceof Cow) {
daisy = (Cow) creature; // OK but not an instance of Cow
System.out.println(daisy);
¥
h
i

The result of this is:

iI am a Cow

' I am a Cow
'I am an Animal

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

FINAL METHOD AND CLASSES

You can declare some or all of a class's methods final. You use the final keyword in a method declaration to indicate that
the method cannot be overridden by subclasses. The Object class does this—a number of its methods are final.

You might wish to make a method final if it has an implementation that should not be changed and it is critical to the
consistent state of the object. For example, you might want to make the getFirstPlayer method in this ChessAlgorithm
class final:

class ChessAlgorithm {
enum ChessPlayer { WHITE, BLACK }

final ChessPlayer getFirstPlayer() {

return ChessPlayer. WHITE; '\ M I R '\J
¥

COLLEGE OF ENGINEERING & TECHNOLOGY

% Methods called from constructors should generally be declared final. If a constructor
calls a non-final method, a subclass may redefine that method with surprising or
undesirable results.

% Note that you can also declare an entire class final. A class that is declared final cannot

be subclassed. This is particularly useful, for example, when creating an immutable

class like the String class.

Final Variable |

Final Methods | :>

Final Classes & D . ‘\MIR'\J

V COLLEGE OF ENGINEERING & TECHNOLOGY

ARRAYLIST CLASS AND METHODS

)

% Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class

and implements List interface.

% The important points about Java ArrayList class are:

>

Y V VYV Y

Java ArrayList class can contain duplicate elements.

Java ArrayList class maintains insertion order.

Java ArrayList class is non synchronized.

Java ArrayList allows random access because array works at the index basis.

In Java ArrayList class, manipulation is slow because a lot of shifting needs to occur if any

element is removed from the array list. '\ M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/synchronization-in-java

iterator()
Iterable<E> ﬁ Iterator<E> I
Collection<E>
pmmmmmem —F—— =
Interfaces ’ I List<E> Set<E> Queue<E> Map<K,V>
SortedSet<E> Deque<E> ISOI’tEdMap<K,V>I
I NavigableSet<E>| I NavigableMap<K,V>|
_ ArrayList HashSet PriorityQueue HashMap
Implell'nentatlon ’ LinkedList LinkedHashSet ArrayDeque HashLinkedMap
canees Stack TreeSet LinkedList(Deque) HashTable
Vector TreeMap

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

add (value)

appends value at end of list

add (index, value)

inserts given value just before the given index,
shifting subsequent values to the right

clear ()

removes all elements of the list

indexOf (value)

returns first index where given value is found
in list (-1 if not found)

get (index)

returns the value at given index

remove (index)

removes/returns value at given index, shifting
subsequent values to the left

set (index, value)

replaces value at given index with given value

size ()

returns the number of elements in list

toString()

returns a string representation of the list
suchas "[3, 42, -7, 15]"

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

import java.util.”;
class ArraylListi{
public static void main(String args[]){
ArrayList<String> list=new ArrayList<String=>();//Creating arraylist
list.add("Ravi");//Adding object in arraylist
list.add("Vijay");
list.add("Ravi");
list.add("Ajay");
//Invoking arraylist object
System.out.printin(list);

AMIRAJ

[Ravi, Vijay, Ravi, Ajay] COLLEGE OF ENGINEERING & TECHNOLOGY

o“/

A ?

AMIRAJ

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

