
CHAPTER 5
OBJECT ORIENTED THINKING

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

PART I
CONCEPT OF
CLASS AND
OBJECT

CLASS ABSTRACTION

❖ Abstraction is the quality of dealing with ideas rather than events. For example,
when you consider the case of e-mail, complex details such as what happens as
soon as you send an e-mail, the protocol your e-mail server uses are hidden from
the user. Therefore, to send an e-mail you just need to type the content, mention
the address of the receiver, and click send.

❖ Likewise in Object-oriented programming, abstraction is a process of hiding the
implementation details from the user, only the functionality will be provided to
the user. In other words, the user will have the information on what the object
does instead of how it does it.

ENCAPSULATION

❖ Encapsulation is one of the four fundamental OOP concepts. The other three are
inheritance, polymorphism, and abstraction.

❖ Encapsulation in Java is a mechanism for wrapping the data (variables) and code
acting on the data (methods) together as a single unit. In encapsulation, the variables
of a class will be hidden from other classes and can be accessed only through the
methods of their current class. Therefore, it is also known as data hiding.

❖ To achieve encapsulation in Java −
➢ Declare the variables of a class as private.
➢ Provide public setter and getter methods to modify and view the variables values.

THINKING OF
OBJECTS

❖ The object oriented
Programming Language
is based upon the concept
of “objects”, which
contains data as attributes
in methods. Every object
in Java has state and
behavior which are
represented by instance
variables and methods. ...
Here method is using
instance variable values.

CLASS RELATIONSHIPS
❖ Association is relation between two

separate classes which establishes through
their Objects. Association can be
one-to-one, one-to-many, many-to-one,
many-to-many.

❖ In Object-Oriented programming, an
Object communicates to other Object to
use functionality and services provided by
that object. Composition and Aggregation
are the two forms of association.

❖ It is a special form of Association where:
➢ It represents Has-A relationship.

❖ It is a unidirectional

association i.e. a one way

relationship. For example,

department can have students

but vice versa is not possible

and thus unidirectional in

nature.

❖ In Aggregation, both the

entries can survive

individually which means

ending one entity will not

effect the other entity

❖ Composition is a restricted form of Aggregation in which two entities are highly

dependent on each other.

➢ It represents part-of relationship.

➢ In composition, both the entities are dependent on each other.

➢ When there is a composition between two entities, the composed object

cannot exist without the other entity.

PRIMITIVE DATA TYPES

WRAPPER CLASS
TYPES

❖ A Wrapper class is a class
whose object wraps or
contains a primitive data
types. When we create an
object to a wrapper class, it
contains a field and in this
field, we can store a
primitive data types. In other
words, we can wrap a
primitive value into a
wrapper class object.

NEED OF
WRAPPER CLASS

1. They convert primitive data types into objects. Objects are

needed if we wish to modify the arguments passed into a

method (because primitive types are passed by value).

2. The classes in java.util package handles only objects and hence

wrapper classes help in this case also.

3. Data structures in the Collection framework, such as ArrayList

and Vector, store only objects (reference types) and not

primitive types.

4. An object is needed to support synchronization in

multithreading.

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

AUTOBOXING
AND UNBOXING

❖ Autoboxing is the automatic
conversion that the Java
compiler makes between the
primitive types and their
corresponding object wrapper
classes. For example, converting
an int to an Integer, a double to a
Double, and so on. If the
conversion goes the other way,
this is called unboxing.

BIGINTEGER CLASS
❖ BigInteger class is used for mathematical operation which involves very big integer calculations

that are outside the limit of all available primitive data types.

❖ For example factorial of 100 contains 158 digits in it so we can’t store it in any primitive data

type available. We can store as large Integer as we want in it. There is no theoretical limit on the

upper bound of the range because memory is allocated dynamically but practically as memory is

limited you can store a number which has Integer.MAX_VALUE number of bits in it which

should be sufficient to store mostly all large values.

BIGDECIMAL CLASS

❖ The BigDecimal class provides operations on double numbers for arithmetic,
scale handling, rounding, comparison, format conversion and hashing. It can
handle very large and very small floating point numbers with great precision
but compensating with the time complexity a bit.

❖ A BigDecimal consists of a random precision integer unscaled value and a
32-bit integer scale. If greater than or equal to zero, the scale is the number of
digits to the right of the decimal point. If less than zero, the unscaled value of
the number is multiplied by 10^(-scale).

PART II
STRINGS

STRING CLASS

❖ In Java, a string is a sequence of characters. For example, "hello" is a string containing a sequence of

characters 'h', 'e', 'l', 'l', and 'o'.

❖ Unlike other programming languages, strings in Java are not primitive types (like int, char, etc). Instead,

all strings are objects of a predefined class named String. For example,

❖ Here, we have created a string named type. Here, we have initialized the string with "java programming". In

Java, we use double quotes to represent a string.

❖ The string is an instance of the String class.

STRING CLASS

Example 1: Java find string's length

Example 2: Java join two strings using concat()

Example 3: Java join strings using + operator

Example 4: Java compare two strings

Example 5: Java get characters from a string

STRINGBUILDER CLASS
❖ StringBuilder objects are like String objects, except that they can be modified. Hence Java StringBuilder class is also

used to create mutable (modifiable) string object. StringBuilder is same as StringBuffer except for one important

difference. StringBuilder is not synchronized, which means it is not thread safe. At any point, the length and content of

the sequence can be changed through method invocations.

❖ StringBuilder class provides an API compatible with StringBuffer, but with no guarantee of synchronization. This class

is designed for use as a drop-in replacement for StringBuffer in places where the string buffer was being used by a

single thread. Where possible, it is recommended that this class be used in preference to StringBuffer as it will be faster

under most implementations.

❖ Instances of StringBuilder are not safe for use by multiple threads. If such synchronization is required then it is

recommended that StringBuffer be used.

CONSTRUCTOR’S OF STRINGBUILDER CLASS

❖ StringBuilder () : Constructs a string builder with no characters in it and an initial

capacity of 16 characters.

❖ StringBuilder (int capacity) : Constructs a string builder with no characters in it

and an initial capacity specified by the capacity argument.

❖ StringBuilder (String str) : Constructs a string builder initialized to the contents of

the specified string. The initial capacity of the string builder is 16 plus the length of

the string argument.

APPEND()

❖ The append() method concatenates the

given argument(string representation)

to the end of the invoking StringBuilder

object. StringBuilder class has several

overloaded append() method. Few are:

➢ StringBuilder append(String str)

➢ StringBuilder append(int n)

➢ StringBuilder append(Object

obj)

INSERT()

❖ The insert() method inserts the given argument(string representation) into the
invoking StringBuilder object at the given position.

REPLACE

❖ The replace() method replaces the string from specified start index to the end
index.

REVERSE()

❖ This method reverses the characters within a StringBuilder object.

CAPACITY()
❖ The capacity() method returns the current capacity of StringBuilder object. The capacity is the

amount of storage available for newly inserted characters, beyond which an allocation will occur

STRINGBUFFER CLASS
❖ Java StringBuffer class is used to create mutable (modifiable) string object. A string buffer is like a

String, but can be modified.

❖ As we know that String objects are immutable, so if we do a lot of modifications to String objects, we

may end up with a memory leak. To overcome this we use StringBuffer class.

❖ StringBuffer class represents growable and writable character sequence. It is also thread-safe i.e.

multiple threads cannot access it simultaneously.

❖ Every string buffer has a capacity. As long as the length of the character sequence contained in the

string buffer does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If

the internal buffer overflows, it is automatically made large

CONSTRUCTOR OF STRINGBUFFER CLASS

❖ StringBuffer () : Creates an empty string buffer with the initial capacity of 16.

❖ StringBuffer (int capacity) : Creates an empty string buffer with the specified

capacity as length.

❖ StringBuffer (String str) : Creates a string buffer initialized to the contents of

the specified string.

❖ StringBuffer (charSequence[] ch) : Creates a string buffer that contains the

same characters as the specified CharSequence.

APPEND()
❖ The append() method concatenates the given argument(string representation) to the end of the invoking StringBuffer

object. StringBuffer class has several overloaded append() method.

➢ StringBuffer append(String str)

➢ StringBuffer append(int n)

➢ StringBuffer append(Object obj)

INSERT()

❖ The insert() method inserts the given argument(string representation) into the invoking
StringBuffer object at the given position.

REPLACE()

❖ The replace() method replaces the string from specified start index to the end
index.

REVERSE()

❖ This method reverses the characters within a StringBuffer
object.

CAPACITY()

❖ The capacity() method returns the current capacity of StringBuffer object. The capacity is
the amount of storage available for newly inserted characters, beyond which an allocation
will occur.

PART III
INHERITANCE
AND
POLYMORPHISM

SUPERCLASS AND SUBCLASS

❖ Java Inheritance (Subclass
and Superclass) In Java, it is
possible to inherit attributes
and methods from one class
to another. ... subclass (child)
- the class that inherits from
another class. superclass
(parent) - the class being
inherited from.

DIFFERENCE BETWEEN SUPERCLASS & SUBCLASS

TYPES OF INHERITANCE

❖ According to the above diagrams, Superclasses varies from each inheritance type.
In single-level inheritance, A is the Superclass. In Multilevel inheritance, A is the
Superclass for B and B is the Superclass for C. In Hierarchical Inheritance A is the
Superclass for both B and C. In multiple inheritances both A and B are Superclasses
for C.

❖ Hybrid inheritance is a combination of multi-level and multiple inheritances. In the
left-hand side diagram, A is the Superclass for B, C and B, C are the Superclasses
for D. In the right-hand side diagram, A is the Superclass for B and B, D are
Superclasses for C.

https://www.differencebetween.com/difference-between-multiple-and-vs-multilevel-inheritance/

❖ According to the above program, class A have sum() and sub() methods. Class B
has multiply() method. Class B is extending class A. Therefore, properties and
methods of class A are accessible by class B. Therefore, class A is the Superclass.
The reference type of class B is taken to create the object. So, all methods such as
sum(), sub() and multiply() are accessible by the object. If Superclass reference
type is used for object creation, the members of class B cannot be accessible. e.g. A
obj = new B(); Therefore, Superclass reference cannot call the method multiply()
because that method belongs to class B.

SUPER KEYWORD
❖ The super keyword in Java is a

reference variable which is used to
refer immediate parent class object.
Whenever you create the instance of
subclass, an instance of parent class
is created implicitly which is
referred by super reference
variable.

1) How to use super keyword to access the variables of parent class

❖ When you have a variable in child class which is already present in the
parent class then in order to access the variable of parent class, you need to
use the super keyword.

❖ By calling a variable like this, we can access the variable of parent class if
both the classes (parent and child) have same variable.
➢ super.variable_name

❖ Let’s take the same example that we have seen above, this time in print
statement we are passing super.num instead of num.

2) Use of super keyword to invoke constructor of parent class

❖ When we create the object of sub class, the new keyword invokes the
constructor of child class, which implicitly invokes the constructor of
parent class. So the order to execution when we create the object of
child class is: parent class constructor is executed first and then the
child class constructor is executed. It happens because compiler itself
adds super()(this invokes the no-arg constructor of parent class) as the
first statement in the constructor of child class.

https://beginnersbook.com/2013/03/constructors-in-java/

3) How to use super keyword in case of method overriding

❖ When a child class declares a same method which is already present in the parent class
then this is called method overriding. We will learn method overriding in the next tutorials
of this series. For now you just need to remember this: When a child class overrides a
method of parent class, then the call to the method from child class object always call the
child class version of the method. However by using super keyword like this:
super.method_name you can call the method of parent class (the method which is
overridden). In case of method overriding, these terminologies are used: Overridden
method: The method of parent class Overriding method: The method of child class Lets
take an example to understand this concept:

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

OVERRIDING AND OVERLOADING METHOD

❖ Method overriding is used to provide the specific implementation of the method
that is already provided by its super class. ... In java, method overloading can't be
performed by changing return type of the method only. Return type can be same or
different in method overloading. But you must have to change the parameter.

METHOD OVERLOADING
❖ Method overloading allows the method to have the same name which differs on the basis of

arguments or the argument types. It can be related to compile-time polymorphism. Following are

a few pointers that we have to keep in mind while overloading methods in Java.

➢ We cannot overload a return type.
➢ Although we can overload static methods, the arguments or input parameters have to be

different.
➢ We cannot overload two methods if they only differ by a static keyword.
➢ Like other static methods, the main() method can also be overloaded.

https://www.edureka.co/blog/static-keyword-in-java/

METHOD OVERRIDING

❖ Inheritance in java involves a relationship between parent and child classes. Whenever

both the classes contain methods with the same name and arguments or parameters it is

certain that one of the methods will override the other method during execution. The

method that will be executed depends on the object.

❖ If the child class object calls the method, the child class method will override the parent

class method. Otherwise, if the parent class object calls the method, the parent class

method will be executed.

POLYMORPHISM AND DYNAMIC BINDING

❖ Polymorphism in Java is a concept by
which we can perform a single action in
different ways. ... So polymorphism
means many forms. There are two types
of polymorphism in Java:
compile-time polymorphism and
runtime polymorphism. We can perform
polymorphism in java by method
overloading and method overriding.

DYNAMIC METHOD DISPATCH

❖ Dynamic method dispatch is a
mechanism by which a call to
an overridden method is
resolved at runtime. This is how
java implements runtime
polymorphism. When an
overridden method is called by
a reference, java determines
which version of that method
to execute based on the type of
object it refer to.

DYNAMIC BINDING

❖ When compiler is not able to resolve
the call/binding at compile time, such
binding is known as Dynamic or late
Binding. Method Overriding is a perfect
example of dynamic binding as in
overriding both parent and child classes
have same method and in this case the
type of the object determines which
method is to be executed. The type of
object is determined at the run time so
this is known as dynamic binding.

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

CASTING OBJECTS

❖ A cast, instructs the compiler to change the existing type of an object reference to

another type.

❖ In Java, all casting will be checked both during compilation and during execution to

ensure that they are legitimate.

❖ An attempt to cast an object to an incompatible object at runtime will results in a

ClassCastException.

❖ A cast can be used to narrow or downcast the type of a reference to make it more

specific

FINAL METHOD AND CLASSES

You can declare some or all of a class's methods final. You use the final keyword in a method declaration to indicate that
the method cannot be overridden by subclasses. The Object class does this—a number of its methods are final.

You might wish to make a method final if it has an implementation that should not be changed and it is critical to the
consistent state of the object. For example, you might want to make the getFirstPlayer method in this ChessAlgorithm
class final:

class ChessAlgorithm {

 enum ChessPlayer { WHITE, BLACK }

 final ChessPlayer getFirstPlayer() {

 return ChessPlayer.WHITE;

 }

}

❖ Methods called from constructors should generally be declared final. If a constructor
calls a non-final method, a subclass may redefine that method with surprising or
undesirable results.

❖ Note that you can also declare an entire class final. A class that is declared final cannot
be subclassed. This is particularly useful, for example, when creating an immutable
class like the String class.

ARRAYLIST CLASS AND METHODS

❖ Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class
and implements List interface.

❖ The important points about Java ArrayList class are:
➢ Java ArrayList class can contain duplicate elements.

➢ Java ArrayList class maintains insertion order.

➢ Java ArrayList class is non synchronized.

➢ Java ArrayList allows random access because array works at the index basis.

➢ In Java ArrayList class, manipulation is slow because a lot of shifting needs to occur if any

element is removed from the array list.

https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/synchronization-in-java

