
CHAPTER 6
EXCEPTION HANDLING,I/O,ABSTRACT CLASSES

AND INTERFACES

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

EXCEPTION
HANDLING

CONCEPT OF EXCEPTION

WHAT IS AN EXCEPTION?

An exception is an unwanted or unexpected event, which occurs
during the execution of a program i.e at run time, that disrupts
the normal flow of the program’s instructions.

WHY AN EXCEPTION OCCURS?

There can be several reasons that can cause a program to throw
exception. For example: Opening a non-existing file in your
program, Network connection problem, bad input data provided
by user etc.

CONT..

EXCEPTION HANDLED BY 5 KEYWORDS:

1. TRY
2. CATCH
3. THROW
4. THROWS
5. FINALLY

EXAMPLE OF EXCEPTION:
class Main {

 public static void main(String[] args) {

 try {

 int divideByZero = 5 / 0;

 System.out.println("Rest of code in try block");

 } catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 } }

}

EXCEPTION AND ERROR

Exceptions are events that occurs in the code. A programmer can handle such conditions
and take necessary corrective actions

Errors indicate that something severe enough has gone wrong, the application should
crash rather than try to handle the error.

There are two types of errors:

1.Compile time error

2.Run time error.

COMPILE TIME ERROR
The errors that are detected by the java
compiler during the compile time are
called the compile time errors.When
compile time errors occurred it will not
generate .class file.

1. Missing Semicolon
2. Wrong Spelling of keywords and

identifiers
3. Missing brackets of class and

methods
4. Missing double quotes in the string
5. Use of undeclared Variables.
6. Use of = instead of ==
7. Incompatible types in assignment

statements
8. Illegal references to the object

RUN-TIME ERROR
➔ Sometimes the program is free

from the compile time errors and
creates a .class file

➔ It is basically the logic errors,that
get caused due to the wrong logic.

1. Accessing the array element which
is out of the index.

2. In an expression,divided by zero.
3. Trying to store a value into an

array of incompatible type.
4. Passing the parameters that is not

in valid in range
5. Converting invalid string to

numbers
6. Trying to illegally change the state

of thread.

TRY-CATCH BLOCK: SYNTAX:

try

{

//Exception gets generated here

}

catch (ExceptionType name)

 {

//Exception is handled here

}

Exception
causing
statement

Exception
handling
statement

Try block

Catch block

Exception
objects gets
created over
here

Exception
Handler

Example of Try-Catch Block:

https://www.youtube.com/watch?list=PLHuIqV4DwPicArdMjI2YI5Hu5c2TnMgvV&time_continu
e=110&v=VIbZRUjh2d0&feature=emb_logo

https://www.youtube.com/watch?list=PLHuIqV4DwPicArdMjI2YI5Hu5c2TnMgvV&time_continue=110&v=VIbZRUjh2d0&feature=emb_logo
https://www.youtube.com/watch?list=PLHuIqV4DwPicArdMjI2YI5Hu5c2TnMgvV&time_continue=110&v=VIbZRUjh2d0&feature=emb_logo

Uncaught Exception:

If there exists some code in the source program which may cause an exception and if the
programmer does not handle this exception than java run time system raised the exception.

Following example shows uncaught exception

output

[i]DEMO OF ArrayIndexOutOfBoundsException

OUTPUT

Nested Try Statements

The try block within a try block is known
as nested try block in java.

Sometimes a situation may arise where a
part of a block may cause one error and
the entire block itself may cause another
error. In such cases, exception handlers
have to be nested.

try

{

 statement;

 try

 {

 statement ;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

Multiple Catch Block

➔ As I mentioned above, a single try
block can have any number of catch
blocks.

➔ we had to catch only one exception
type in each catch block. So
whenever we needed to handle more
than one specific exception, but take
same action for all exceptions, then
we had to have more than one catch
block containing the same code.

SYNTAX:

try

{

//Exception gets generated here

}

catch (ExceptionType name)

 {

//Exception is handled here

}
catch (ExceptionType name)

 {

//Exception is handled here

}

Using Throws

According to the Java Compiler - "we must
either catch checked exceptions by
providing appropriate try-catch block or we
should declare them, using throws."

Hence, when a method doesn't want to
catch/handle one or more checked exceptions
by providing an appropriate try-catch block
within, it must use throws keyword in its
method signature to declare that it does not
handle but only throws such checked
exceptions.

SYNTAX:

[i]

//Declaring one checked exception
using throws keyword

public void method1() throws
IOException //method signature{}

[ii]

method_name(parameter_list)throws
exception_list

{}

Using throw

➔ you may use the throw keyword when you explicitly want to
throw an exception. The keyword throw is followed by an object
of the exception class that you want to throw. Using throw
keyword, an exception can be explicitly thrown from within the
two places in a Java program -

● try-block or,
● catch-block.

Throw in Try Block

To throw an exception out of try block,
keyword throw is followed by creating a
new object of exception class that we
wish to throw. For example -

try

{

// An object of IOException exception
class is created using "new" keyword.

throw new IOException();

}

Throw in Catch Block

To throw an exception out of catch block,
keyword throw is followed by object
reference of the exception class that was
caught by catch block. For example -

catch(IOException io)

{

throw io; // An existing exception
class object referenced by "io" of type
"IOException", is thrown.

}

Finally Clause

➔ Java finally block is a block that is used to execute important
code such as closing connection, stream etc.

➔ Java finally block is always executed whether exception is
handled or not.

➔ Java finally block follows try or catch block
➔ Finally block in java can be used to put "cleanup" code such as

closing a file, closing connection etc.

Build In Exceptions

Throwable Class
The java.lang.Throwable class is the superclass of all errors and exceptions in the Java
language. Only objects that are instances of this class (or one of its subclasses) are thrown
by the Java Virtual Machine or can be thrown by the Java throw statement.

Class Declaration

Following is the declaration for java.lang.Throwable class −

public class Throwable

 extends Object

 implements Serializable

Re-throwing Exception:

➔ An exception can be rethrown in a catch block. This action will cause the exception to
be passed to the calling method. If the rethrow operation occurs in the main method
then the exception is passed to the JVM and displayed on the console. The purpose of
the rethrow operation is to get the attention of the outside world that an exception has
occurred and at the same time perform any contingency logic (such as logging) in the
catch block.

OUTPUT:

Chained Exception

➔ Chained Exceptions allows to relate one exception with another exception, i.e one
exception describes cause of another exception.

➔ For example, consider a situation division operation a/b in which a b is 0 which
throws an ArithmeticException because of an attempt to divide by zero but the actual
cause of exception was an I/O error (bcz wrong input value to variable b)which
caused the divisor to be zero. The method will throw only ArithmeticException to the
caller. So the caller would not come to know about the actual cause of exception.
Chained Exception is used in such type of situations.

CONT...

The throwable class supports chained exception using the following methods:

Constructors
1. Throwable(Throwable cause) - the cause is the current exception.
2. Throwable(String msg, Throwable cause) - msg is the exception message, the

cause is the current exception.

Methods
1. getCause - returns actual cause.
2. initCause(Throwable cause) - sets the cause for calling an exception.

Defining Custom Exception Classes

➔ Java provides us facility to create our own exceptions which are basically derived

classes of Exception. For example MyException in below code extends the Exception

class.

➔ We pass the string to the constructor of the super class- Exception which is obtained

using “getMessage()” function on the object created.

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

VIDEO LINKS FOR
EXCEPTION
HANDLING

Introduction to Exception Handling, How Exception is Handled
https://www.youtube.com/watch?v=HDVUos1lIyY

https://www.youtube.com/watch?v=ohpCMpderow

Try Catch in Java with Example, Java Exception Handling
https://www.youtube.com/watch?v=-fXnRkB8FFc

Throw Keyword in Java Exception Handling with Example
https://www.youtube.com/watch?v=j9M69wdEU-0

Finally Keyword in Java with Complete Example
https://www.youtube.com/watch?v=c_Jun_ouCg8

Throws Keyword in Java Exception Handling, Throw Vs. Throws
https://www.youtube.com/watch?v=nsJvdOrjBRA

https://www.youtube.com/watch?v=HDVUos1lIyY
https://www.youtube.com/watch?v=ohpCMpderow
https://www.youtube.com/watch?v=-fXnRkB8FFc
https://www.youtube.com/watch?v=j9M69wdEU-0
https://www.youtube.com/watch?v=c_Jun_ouCg8
https://www.youtube.com/watch?v=nsJvdOrjBRA

CONTT..
Exception Hierarchy in Java
https://www.youtube.com/watch?v=S5K1T4GqdJE

Throwable class and exception class?
https://www.youtube.com/watch?v=o4NfR8AvaQ0

What is chained Exceptions?
https://www.youtube.com/watch?v=O16v69dCUj8

User Defined Exceptions or Custom Exception
https://www.youtube.com/watch?v=vkN2v3LsoEo

https://www.youtube.com/watch?v=NsctooZANVk

https://www.youtube.com/watch?v=S5K1T4GqdJE
https://www.youtube.com/watch?v=o4NfR8AvaQ0
https://www.youtube.com/watch?v=O16v69dCUj8
https://www.youtube.com/watch?v=vkN2v3LsoEo
https://www.youtube.com/watch?v=NsctooZANVk

I/O

File Class and its Input and Output

➔ The java.io package contains nearly every class you might ever need to perform input and output
(I/O) in Java. All these streams represent an input source and an output destination

➔ The File class contains several methods for working with the path name, deleting and renaming
files, creating new directories, listing the contents of a directory, and determining several
common attributes of files and directories.

➔ A pathname, whether abstract or in string form can be either absolute or relative. The parent of

an abstract pathname may be obtained by invoking the getParent() method of this class.

➔ First of all, we should create the File class object by passing the filename or directory name to it.

A file system may implement restrictions to certain operations on the actual file-system object,

such as reading, writing, and executing. These restrictions are collectively known as access

permissions.

How to create a File Object?

➔ A File object is created by passing in a String that represents the name of a file, or a

String or another File object. For example,

File a = new File("/usr/local/bin/geeks");

➔ defines an abstract file name for the geeks file in directory /usr/local/bin. This is an

absolute abstract file name.

Absolute Path

➔ Simply, a path is absolute if it starts with the root element of the file system. In
windows, the root element is a drive e.g. C:\\, D:\\, while in unix it is denoted by “/”
character.

➔ An absolute path is complete in that no other information is required to locate the file,
it usually holds the complete directory list starting from the root node of the file
system till reaching the file or directory it denotes.

➔ Since absolute path is static and platform dependent, it is a bad practice to locate a file
using absolute path inside your program, since you will lose the ability to reuse your
program on different machines and platforms.

File absoluteFile = new File("D:\\sample-documents\\pdf-sample.pdf");

Relative Path

➔ A relative path is a path which doesn’t start with the root element of the file system. It
is simply the path needed in order to locate the file from within the current directory
of your program. It is not complete and needs to be combined with the current
directory path in order to reach the requested file.

➔ In order to construct a rigid and platform independent program, it is a common
convention to use a relative path when locating a file inside your program.

File relativeFile = new File("/sample-documents/pdf-sample.pdf");

Constructor:

➔ File(File parent, String child) : Creates a new File instance from a parent

abstract pathname and a child pathname string.

➔ File(String pathname) : Creates a new File instance by converting the given

pathname string into an abstract pathname.

➔ File(String parent, String child) : Creates a new File instance from a parent

pathname string and a child pathname string.

➔ File(URI uri) : Creates a new File instance by converting the given file: URI into

an abstract pathname.

Methods:
1. String getName() : Returns the name of the file or directory denoted by this abstract pathname.

2. String getParent() : Returns the pathname string of this abstract pathname’s parent.

3. File getParentFile() : Returns the abstract pathname of this abstract pathname’s parent.

4. String getPath() : Converts this abstract pathname into a pathname string.

5. boolean isDirectory() : Tests whether the file denoted by this pathname is a directory.

6. boolean isFile() : Tests whether the file denoted by this abstract pathname is a normal file.

7. boolean canExecute() : Tests whether the application can execute the file denoted by this abstract pathname.

8. boolean canRead() : Tests whether the application can read the file denoted by this abstract pathname.

9. boolean canWrite() : Tests whether the application can modify the file denoted by this abstract pathname.

output:

Reading Data From Web
As many of you must be knowing that Uniform Resource Locator-URL is a string of text that identifies all the

resources on Internet, telling us the address of the resource, how to communicate with it and retrieve something from

it.

A Simple URL looks like:

Constructor in URL
➔ URL(String protocol, String host, String file): Creates a URL object from the specified protcol, host,

and file name.

➔ URL(String protocol, String host, int port, String file): Creates a URL object from protocol, host, port

and file name.

➔ URL(URL context, String spec): Creates a URL object by parsing the given spec in the given context.

➔ URL(String protocol, String host, int port, String file, URLStreamHandler handler):-

Creates a URL object from the specified protocol, host, port number, file, and handler.

➔ URL(URL context, String spec, URLStreamHandler handler):-

Creates a URL by parsing the given spec with the specified handler within a specified context.

Methods in URL
➔ public String getHost(): return the hostname of the URL in IPv6 format.

➔ public String getFile(): returns the file name.

➔ public int getPort(): returns the port associated with the protocol specified by the URL.

➔ public int getDefaultPort: returns the default port used.

➔ public String getProtocol(): returns the protocol used by the URL.

➔ public String toString(): As in any class, toString() returns the string representation of the given URL object.

➔ public String getAuthority(): returns the authority part of URL or null if empty.

➔ public String getPath(): returns the path of the URL, or null if empty.

output:

URL Connection Class

➔ The Java URLConnection class represents a communication link between the URL
and the application. This class can be used to read and write data to the specified
resource referred by the URL.

➔ How to get the object of URLConnection class
➔ The openConnection() method of URL class returns the object of URLConnection

class. Syntax:

public URLConnection openConnection()throws IOException{}

output:

ABSTRACT
CLASSES

Abstract Classes:

➔ A class which is declared as abstract is known as an abstract class. It can have abstract and
non-abstract methods. It needs to be extended and its method implemented. It cannot be
instantiated.

Points to Remember:

➔ An abstract class must be declared with an abstract keyword.

➔ It can have abstract and non-abstract methods.

➔ It cannot be instantiated.

➔ It can have constructors and static methods also.

➔ It can have final methods which will force the subclass not to change the body of the method.

https://www.javatpoint.com/java-constructor

Example of abstract class

abstract class A{}

Abstract Method in Java

A method which is declared as abstract and does not have implementation is known as an
abstract method.

Example of abstract method

abstract void printStatus();

Abstact Class v/s Concrete Class

Interfaces

Interfaces

The interface in Java is a mechanism to achieve abstraction. There can be only abstract
methods in the Java interface, not method body. It is used to achieve abstraction and
multiple inheritance in Java.

There are mainly three reasons to use interface. They are given below.

● It is used to achieve abstraction.

● By interface, we can support the functionality of multiple inheritance.

● It can be used to achieve loose coupling.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

Syntax:

interface <interface_name>{

 // declare constant fields

 // declare methods that abstract

 // by default.

public void method1(); /

 public void method2();

}

syntax:

acess_modifier interface name_of_interface

{

return_type method_name1(parameter1,parameter2,......,parametern);

return_type method_name2(parameter1,parameter2,......,parametern);

type static final variable_name=value;

}

Extending Interfaces

An interface can extend another interface in the same way that a class can extend another
class. The extends keyword is used to extend an interface, and the child interface inherits
the methods of the parent interface.

Syntax:

Interface Interface_name2 extends Interface_name1

{

//body of interface

}

Example:
Interface A

{

Int val=10;

}

Interface B extends A

{

Void print_val();

}

Interface A

{

Int val=10;

}

Interface B extends A

{

Void print_val();

}

interfaces C extends A,B{

…...

}

Comparable Interface

➔ Java Comparable interface is used to order the objects of the user-defined class. This
interface is found in java.lang package and contains only one method named
compareTo(Object). It provides a single sorting sequence only, i.e., you can sort the
elements on the basis of single data member only. For example, it may be rollno,
name, age or anything else.

➔ If we use Arrays and List objects then these objects can be sorted automatically by
Collection.sort method which is basically implements comparable interfaces.

compareTo(Object obj) method

public int compareTo(Object obj): It is used to compare the current object with the
specified object. It returns

● positive integer, if the current object is greater than the specified object.

● negative integer, if the current object is less than the specified object.

● zero, if the current object is equal to the specified object.

Cloneable Interface

➔ The object cloning is a way to create exact copy of an object. The clone() method of
Object class is used to clone an object.

➔ The java.lang.Cloneable interface must be implemented by the class whose object
clone we want to create. If we don't implement Cloneable interface, clone() method
generates CloneNotSupportedException.

What if we don’t implement Cloneable interface?

The program would throw CloneNotSupportedException if we don’t implement the
Cloneable interface. A class implements the Cloneable interface to indicate to the
Object.clone() method that it is legal for that method to make a field-for-field copy of
instances of that class.

Does clone object and original object point to the same location in memory

The answer is no. The clone object has its own space in the memory where it copies the
content of the original object. That’s why when we change the content of original object
after cloning, the changes does not reflect in the clone object. Lets see this with the help of
an example.

VIDEO LINKS FOR
I/O,ABSTRACT
CLASS AND
INTERFACES

Example of URL Class, How to Parse URL in Java
https://www.youtube.com/watch?v=DuFyhu5_GPs

Java URLConnection Class – How to Read/Write File on URL
https://www.youtube.com/watch?v=5-2kNYxWxOg

Abstract Class and Abstract Methods in Java
https://www.youtube.com/watch?v=TZa9omZ-uTg

Interface in Java with Example, Multiple Inheritance in Java using Interface
https://www.youtube.com/watch?v=1MDf8p-Tkk0

Java Comparable interface
https://www.youtube.com/watch?v=swEvHhN9l8k

Cloneable Interface

https://www.youtube.com/watch?v=b2uFL4BFDYg

https://www.youtube.com/watch?v=DuFyhu5_GPs
https://www.youtube.com/watch?v=5-2kNYxWxOg
https://www.youtube.com/watch?v=TZa9omZ-uTg
https://www.youtube.com/watch?v=1MDf8p-Tkk0
https://www.youtube.com/watch?v=swEvHhN9l8k
https://www.youtube.com/watch?v=b2uFL4BFDYg

