
CHAPTER 7

JAVAFX Basic ,Event Driven Programming and Animations

SUBJECT:OOP-I
CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)



PART-I JAVAFX Basic



Basic Structure of JAVAFX Program

JavaFX application is divided hierarchically into three main components known as Stage, Scene and nodes. 
We need to import javafx.application.Application class in every JavaFX application. This provides the 
following life cycle methods for JavaFX application.

● public void init()

● public abstract void start(Stage primaryStage)

● public void stop()

in order to create a basic JavaFX application, we need to:

1. Import javafx.application.Application into our code.

2. Inherit Application into our class.

3. Override start() method of Application class.



Stage

★ Stage in a JavaFX application is similar to 
the Frame in a Swing Application. It acts 
like a container for all the JavaFX objects. 
Primary Stage is created internally by the 
platform. Other stages can further be 
created by the application. The object of 
primary stage is passed to start method. 
We need to call show method on the 
primary stage object in order to show our 
primary stage. Initially, the primary Stage 
looks like following.



Scene

★ Scene actually holds all the physical contents (nodes) of a JavaFX application. 
Javafx.scene.Scene class provides all the methods to deal with a scene object. 
Creating scene is necessary in order to visualize the contents on the stage.

★ At one instance, the scene object can only be added to one stage. In order to 
implement Scene in our JavaFX application, we must import javafx.scene package in 
our code. The Scene can be created by creating the Scene class object and passing the 
layout object into the Scene class constructor. We will discuss Scene class and its 
method later in detail.



Scene Graph

★ Scene Graph exists at the lowest level of the hierarchy. It can be seen as the collection 
of various nodes. A node is the element which is visualized on the stage. It can be any 
button, text box, layout, image, radio button, check box, etc.

★ The nodes are implemented in a tree kind of structure. There is always one root in the 
scene graph. This will act as a parent node for all the other nodes present in the scene 
graph. However, this node may be any of the layouts available in the JavaFX system.

★ The leaf nodes exist at the lowest level in the tree hierarchy. Each of the node present 
in the scene graphs represents classes of javafx.scene package therefore we need to 
import the package into our application in order to create a full featured javafx 
application.





Writing a First JAVAFX Program









Panes,UI Control and Shapes

★ Pane is a container class using which the UI 
components can be placed at any desired location 
with any desired size.

★ Node is any visual component such as UI 
Controls,Shapes,or a image view.

★ UI Controls refer to label,button,checkbox,radio 
button and so on.

★ Shapes refer to lines,rectangle,circle and so on.
★ A Scene can be displayed in a stage.





OUTPUT:



Property Binding

★ JAVAFX introduces a new concept called property binding that enables a target object 
to be bound to a source object.

★ The target object is simply called a binding object or a binding property.
★ Method:

target.bind(source)

★ The bind method defines in javafx.beans.property.Property
★ A binding property(target) is an instance of javafx.beans.property.Property
★ A source object is an instance of the javafx.beans.value.ObservableValue





The Color and the Font Class

★ In JavaFX, we can fill the shapes with the colors. We have the flexibility to create our 
own color using the several methods and pass that as a Paint object into the setFill() 
method. Let's discuss the several methods of creating color in JavaFX.

★ RGB Color
★ RGB color system is the most popular method to create a color in graphics. It consists 

of three components named as RED → R, GREEN → G and BLUE → B. Each 
component uses 8 Bits that means every component can have the integer value from 0 
to 22^8 - 1=255.

★ The computer screen can be seen as the collection of pixels. The set (R,G,B) actually 
represents the emission of their respective LEDs on the screen.



★ If the value of RED is set to 0 then it means that the Red LED is turned off while the 
value 255 indicates that the full emission of LED is being there. The combination of 
(0,0,0) represents the black color while (255,255,255) represents the white color. The 
middle values in that range can represent different colors.

★ Using the superimposition of RGB, we can represent 255*255*255 different colors. 
In JavaFX, the class javafx.scene.paint.Color class represents colors.

★ There is a static method named as rgb() of Color class. It accepts three integer 
arguments as Red, Green, Blue and one optional double argument called alpha. The 
value of alpha is proportional to the opacity of the color. The alpha value 0 means that 
the color is completely transparent while the value 1 means that the color is 
completely opaque.





The font class/text class:

 we need to provide the text based information on the interface of our 
application. JavaFX library provides a class named 
javafx.scene.text.Text for this purpose. This class provides various 
methods to alter various properties of the text. We just need to 
instantiate this class to implement text in our application.







Font and position of the text

★ JavaFX enables us to apply various fonts to the text nodes. We just need to set the 
property font of the Text class by using the setter method setFont(). This method 
accepts the object of Font class. 

★ The class Font belongs the package javafx.scene.text. It contains a static method 
named font(). This returns an object of Font type which will be passed as an 
argument into the setFont() method of Text class. The method Font.font() accepts the 
following parameters.

★ Family: it represents the family of the font. It is of string type and should be an 

appropriate font family present in the system.



cont..
★ Weight: this Font class property is for the weight of the font. There are 9 values which can be used as the font 

weight. The values are FontWeight. BLACK, BOLD, EXTRA_BOLD, EXTRA_LIGHT, LIGHT, 

MEDIUM, NORMAL, SEMI_BOLD, THIN.

★ Posture: this Font class property represents the posture of the font. It can be either FontPosture.ITALIC or 

FontPosture.REGULAR.

★ Size: this is a double type property. It is used to set the size of the font.

The Syntax of the method setFont() is given below.

<text_object>.setFont(Font.font(<String font_family>, <FontWeight>, 

<FontPosture>, <FontSize>)  





The image and image-view class:

★ You can load and modify images using the classes provided by JavaFX in the package 
javafx.scene.image. JavaFX supports the image formats like Bmp, Gif, Jpeg, Png.

Loading an Image

★ You can load an image in JavaFX by instantiating the class named Image of the 
package javafx.scene.image.

★ To the constructor of the class, you have to pass either of the following −
● An InputStream object of the image to be loaded or,
● A string variable holding the URL for the image.



//Passing FileInputStream object as a parameter 

FileInputStream inputstream = new FileInputStream("C:\\images\\image.jpg"); 

Image image = new Image(inputstream); 

//Loading image from URL 

//Image image = new Image(new FileInputStream("url for the image));

After loading the image, you can set the view for the image by instantiating the 
ImageView class and passing the image to its constructor as follows −

ImageView imageView = new ImageView(image);







Layout Panes and Shapes

LAYOUT PANES:
★ Layouts are the top level container classes that define the UI styles for scene graph objects. Layout can be seen 

as the parent node to all the other nodes. JavaFX provides various layout panes that support different styles of 
layouts.

★ In JavaFX, Layout defines the way in which the components are to be seen on the stage. It basically organizes 
the scene-graph nodes. We have several built-in layout panes in JavaFX that are HBox, VBox, StackPane, 
FlowBox, AnchorPane, etc. Each Built-in layout is represented by a separate class which needs to be 
instantiated in order to implement that particular layout pane.

★ All these classes belong to javafx.scene.layout package. javafx.scene.layout.Pane class is the base class for 
all the built-in layout classes in JavaFX.



Layout Classes:

★ javafx.scene.layout Package provides various classes that 
represents the layouts. The classes are described in the table 
below.



Steps to create Layout

In order to create the layouts, we need to follow the following steps.

1. Instantiate the respective layout class, for example, HBox root = new HBox();

2. Setting the properties for the layout, for example, root.setSpacing(20);

3. Adding nodes to the layout object, for example, 

root.getChildren().addAll(<NodeObjects>);



HBox

HBox layout pane arranges the nodes in a single row. It is represented by 
javafx.scene.layout.HBox class. We just need to instantiate HBox class in order to create 
HBox layout.



HBox Constructor:

The HBox class contains two constructors that are given below.

1. new HBox() : create HBox layout with 0 spacing

2. new Hbox(Double spacing) : create HBox layout with a spacing value





VBox
Instead of arranging the nodes in horizontal row, Vbox Layout Pane arranges the nodes in a single 
vertical column. It is represented by javafx.scene.layout.VBox class which provides all the methods 
to deal with the styling and the distance among the nodes. This class needs to be instantiated in order 
to implement VBox layout in our application.



VBox Constructors:

1. VBox() : creates layout with 0 spacing

2. Vbox(Double spacing) : creates layout with a spacing value of double type

3. Vbox(Double spacing, Node? children) : creates a layout with the specified spacing 

among the specified child nodes

4. Vbox(Node? children) : creates a layout with the specified nodes having 0 spacing 

among them





JavaFX StackPane
The StackPane layout pane places all the nodes into a single stack where every new node gets placed on the top of the previous node. It 
is represented by javafx.scene.layout.StackPane class. We just need to instantiate this class to implement StackPane layout into our 
application

The class contains two constructors that are given below.

1. StackPane()

2. StackPane(Node? Children)

.





GridPane:

★ GridPane Layout pane allows us to add the multiple nodes in multiple rows and 
columns. It is seen as a flexible grid of rows and columns where nodes can be placed 
in any cell of the grid. It is represented by javafx.scence.layout.GridPane class. We 
just need to instantiate this class to implement GridPane.

★ The class contains only one constructor that is given below

Public GridPane(): creates a gridpane with 0 hgap/vgap.







FlowPane
★ FlowPane layout pane organizes the nodes in a flow that are wrapped at the flowpane's boundary. The horizontal flowpane 

arranges the nodes in a row and wrap them according to the flowpane's width. The vertical flowpane arranges the nodes in a 
column and wrap them according to the flowpane's height. FlowPane layout is represented by javafx.scene.layout.FlowPane 
class. We just need to instantiate this class to create the flowpane layout.

★ There are 8 constructors in the class that are given below:
1. FlowPane()

2. FlowPane(Double Hgap, Double Vgap)

3. FlowPane(Double Hgap, Double Vgap, Node? children)

4. FlowPane(Node... Children)

5. FlowPane(Orientation orientation)

6. FlowPane(Orientation orientation, double Hgap, Double Vgap)

7. FlowPane(Orientation orientation, double Hgap, Double Vgap, Node? children )

8. FlowPane(Orientation orientation, Node... Children)







BorderPane

★ BorderPane arranges the nodes at the left, right, centre, top and bottom of the screen. 
It is represented by javafx.scene.layout.BorderPane class. This class provides 
various methods like setRight(), setLeft(), setCenter(), setBottom() and setTop() 
which are used to set the position for the specified nodes. We need to instantiate 
BorderPane class to create the BorderPane layout.

★ There are the following constructors in the class.
○ BorderPane() : create the empty layout

○ BorderPane(Node Center) : create the layout with the center node

○ BorderPane(Node Center, Node top, Node right, Node bottom, Node left) : 

create the layout with all the nodes





Shapes

★ In some of the applications, we need to show two dimensional shapes to the user. 
However, JavaFX provides the flexibility to create our own 2D shapes on the screen .

★ There are various classes which can be used to implement 2D shapes in our 
application. All these classes resides in javafx.scene.shape package.

★ This package contains the classes which represents different types of 2D shapes. 
There are several methods in the classes which deals with the coordinates regarding 
2D shape creation.



Line:

★ In general, Line can be defined as the geometrical structure which joins two points 
(X1,Y1) and (X2,Y2) in a X-Y coordinate plane. JavaFX allows the developers to 
create the line on the GUI of a JavaFX application. JavaFX library provides the class 
Line which is the part of javafx.scene.shape package.

★ How to create a Line?
★ Follow the following instructions to create a Line.
● Instantiate the class javafx.scene.shape.Line.

● set the required properties of the class object.

● Add class object to the group



Properties:







Rectangle:

In general, Rectangles can be defined as the geometrical figure consists of four sides, out of which, the opposite 
sides are always equal and the angle between the two adjacent sides is 90 degree. A Rectangle with four equal sides 
is called square.

JavaFX library allows the developers to create a rectangle by instantiating javafx.scene.shape.Rectangle class







Circle:
A circle is a special type of ellipse with both of the focal points at the same position. Its horizontal radius is equal to 
its vertical radius. JavaFX allows us to create Circle on the GUI of any application by just instantiating 
javafx.scene.shape.Circle class. Just set the class properties by using the instance setter methods and add the class 
object to the Group.





Ellipse

In general, ellipse can be defined as the geometrical structure with the two focal points. The focal points in the 
ellipse are chosen so that the sum of the distance to the focal points is constant from every point of the ellipse.

In JavaFX, the class javafx.scene.shape.Ellipse represents Ellipse. This class needs to be instantiated in order to 
create ellipse. This class contains various properties which needs to be set in order to render ellipse on a XY place.





Arc
In general, Arc is the part of the circumference of a circle or ellipse. It needs to be created in some of the JavaFX 
applications wherever required. JavaFX allows us to create the Arc on GUI by just instantiating 
javafx.scene.shape.Arc class. Just set the properties of the class to the appropriate values to show arc as required by 
the Application.





Polygons:

★ Polygon can be defined as a plain figure with at least three straight sides forming a loop. In the case of 
polygons, we mainly considers the length of its sides and the interior angles. Triangles, squares, Pentagons, 
Hexagons,etc are all polygons.

★ In JavaFX, Polygon can be created by instantiating javafx.scene.shape.Polygon class. We need to pass a 
Double array into the class constructor representing X-Y coordinates of all the points of the polygon. The 
syntax is given below.

Polygon poly = new Polygon(DoubleArray);   

★ We can also create polygon by anonymously calling addAll() method on the reference returned by calling 
getPoints() method which is an instance method of Polygon class. However, we need to pass the double array 
into this method, which represents X-Y coordinates of the polygon. The syntax is given below.

Pollygon polygon_object = new Pollygon();  

Pollygon_Object.getPoints().addAll(Double_Array);  





PART II-Event Driven 
Programming



Events and Events Sources:

Event:Event means any activity that interrupts the current ongoing 
activity.For Example:When user clicks button then it generates an event.To 
respond to button click we need to write the code to process the button 
clicking action.

Event Source Object:The object generates the event is called event source 
object.For Example:if the event gets generated on clicking the button,then 
button is the event source object.



cont..

Event Handler:The event handling code written to process the generated 
event is called event handler.

Event Listener:The task of handling an event is carried out by event 
listener.When an event occurs,first of all an event object of the appropriate 
type is created.This object is then passed to a Listener.A listener must 
implement the interface that has the method for event handling.



CLICK!
MyButton

Void handle(Event event)
{

}

My Event Listener

notify

MouseEvent







Example:







Inner Classes:
★ Java inner class or nested class is a class which is declared inside the class or interface.
★ We use inner classes to logically group classes and interfaces in one place so that it can be 

more readable and maintainable.
★ Additionally, it can access all the members of outer class including private data members and 

methods.
★ Syntax:

Acess_modifier class Java_Outer_class

{  

 //code  

Acess_modifier  class Java_Inner_class

{  

  //code  

 }  

}





Static Member Class

★ A static class i.e. created inside a class is called static nested class in 
java. It cannot access non-static data members and methods. It can be 
accessed by outer class name.

★ It can access static data members of outer class including private.

★ Static nested class cannot access non-static (instance) data member or 

method.



class TestOuter1{  

  static int data=30;  

  static class Inner{  

   void msg(){System.out.println("data is "+data);}  

  }  

  public static void main(String args[]){  

  TestOuter1.Inner obj=new TestOuter1.Inner();  

  obj.msg();  

  }  

} 



Member Inner Classes

A non-static class that is created inside a class but outside a method is called 
member inner class.

Syntax:

class Outer{  

 //code  

 class Inner{  

  //code  

 }  

} 



Local Inner Classes

★ A class i.e. created inside a method is called local inner class in java. If 
you want to invoke the methods of local inner class, you must instantiate 
this class inside the method.



public class localInner1{  

 private int data=30;//instance variable  

 void display(){  

  class Local{  

   void msg(){System.out.println(data);}  

  }  

  Local l=new Local();  

  l.msg();  

 }  

 public static void main(String args[]){  

  localInner1 obj=new localInner1();  

  obj.display();  

 }  

}  



Anonymous Inner Class

A class that have no name is known as anonymous inner class in java. It should 
be used if you have to override method of class or interface. Java Anonymous 
inner class can be created by two ways:

1. Class (may be abstract or concrete).

2. Interface



abstract class Person{  

  abstract void eat();  

}  

class TestAnonymousInner{  

 public static void main(String args[]){  

  Person p=new Person(){  

  void eat(){System.out.println("nice fruits");}  

  };  

  p.eat();  

 }  

}



Anonymous Inner Class Handlers

★ Anonymous inner class is an inner class without a name.It combines two 
things-defining an inner class and creating an instance of the class into 
one step.

★ Syntax:

new  superclassName_OR_InterfaceName()

{

//overriding method in superclass or Interface

}









Lamda Method
Anonymous inner class event handler

ok_button.setOnAction{

new  EventHandler <ActionEvent>(){

@override

Public void handle(ActionEvent event)

{

System.out.println(“OK Button is clicked!!!”);

}

});

Lamda expression event handler

ok_button.setOnAction((ActionEvent e)->

{

System.out.println(“OK Button is clicked!!!”);

}



Mouse and Key Events:
User Action Source Object Event Type 

Fired
Event Registration Method

Mouse Pressed

Node,Scene Mouse Event

setOnMousePressed(EventHandler<MouseEve
nt>)

Mouse Released setOnMouseReleased(EventHandler<MouseEv
ent>)

Mouse Clicked setOnMouseClicked(EventHandler<MouseEven
t>)

Mouse Moved setOnMouseMoved(EventHandler<MouseEven
t>)

Mouse Dragged setOnMouseDragged(EventHandler<MouseEve
nt>)

Mouse entered setOnMouseEntered(EventHandler<MouseEve
nt>)

Mouse exited setOnMouseExited(EventHandler<MouseEven
t>)



MouseEvent Class

Method Description

MouseButton getButton It represent which mount button is pressed

int  getClickCount() It returns the number of mouse clicks.

double getX() It returns the x-coordinates of the mouse point in the event 
source node.

double  getY() It returns the y-coordinates of the mouse point in the event 
source node.

double  getSceneX() It returns the x-coordinates of the mouse point in the Scene

double  getSceneY() It returns the y-coordinates of the mouse point in the Scene

double  getscreenX() It returns the x-coordinates of the mouse point in the Screen



double  getscreenY() It returns the y-coordinates of the mouse 
point in the Screen

boolean  isAltDown() It checks if the ALT Key is pressed or not.

boolean isControlDown() It checks if the Control Key is pressed or 
not.

boolean isShiftDown() It checks if the shift key is pressed or not.







Keyboard Events:
When any key on the keyboard is pressed,released,or typed on a node then the keyboard event 
occurs.

User Action Source 
Object

Event Type 
Fired

Event Registration Method

Key Pressed

Node,
Scene KeyEvent

setOnKeyPressed(EventHandler<KeyEvent>)

Key Released setOnKeyReleasd(EventHandler<KeyEvent>)

Key typed setOnKeyTyped(EventHandler<KeyEvent>)



KeyEvent Class

Method Description

String getCharacter() It returns the character associated with the key pressed.

KeyCode getCode() Returns the key code associated with the key in the event

String getText() Returns the string describing the key code.

boolean  isAltDown() It returns true if the ALT Key is down

boolean isControlDown() It returns true if the Control Key is down.

boolean isShiftDown() It returns true  if the shift key is pressed.

boolean  isMetaDown() It returns true if Meta button is pressed.





Listeners for Observable Objects

★ A listener can be added to process a value change in an observable 
object.

★ Observable Object is basically an instance of class Observable.
★ Using the addListener(InvalidationListener listener)method we 

can add the Listener.
★ The Method public void invalidated(Observable) is an overriding 

method,that helps to note the change in value.



package javafxapplicationobservable;

import javafx.application.Application;

import javafx.beans.Observable;

import javafx.beans.property.IntegerProperty;

import javafx.beans.property.SimpleIntegerProperty;

public class JavaFXApplicationObservable extends Application {

    public static void main(String[] args) {

       IntgerProperty count= new SimpleIntegerProperty();

       count.addListner((Observable ov)->{

       System.out.println("The new value is"+count.intValue());

       });

       count.set(100);}}



Animation

★ In general, the animation can be defined as the transition which creates the myth 
of motion for an object. It is the set of transformations applied on an object over 
the specified duration sequentially so that the object can be shown as it is in 
motion.

★ This can be done by the rapid display of frames. In JavaFX, the package 
javafx.animation contains all the classes to apply the animations onto the nodes. 
All the classes of this package extend the class javafx.animation.Animation.

★ JavaFX provides the classes for the transitions like RotateTransition, 
ScaleTransition, TranslateTransition, FadeTransition, FillTransition, 
StrokeTransition, etc.





Path Transition

★ It allows the node to animate through a specified path over the specified 
duration. In JavaFX, the path is defined by instantiating the class 
javafx.scene.shape.Path.

★ The translation along this path is done by updating the x and y coordinate 
of the node at the regular intervals. The rotation can only be done in the 
case when the orientation is set to be 
OrientationType.ORTHOGONAL_TO_TANGENT.

★ In JavaFX, the class javafx.animation.PathTransition represents the 
path transition. We need to instantiate this class in order to create an 
appropriate path transition.





Constructor:

There are three constructors in the class.

1. public PathTransition() : Creates the instance of the Path Transition 

with the default parameters

2. public PathTransition(Duration duration, Shape path) : Creates the 

instance of path transition with the specified duration and path

3. public PathTransition(Duration duration, Shape path, Node node) : 

Creates the instance of the PathTransition with the specified duration, 

path and the node.









Fade Transition

★ It animates the opacity of the node so that the fill color of the node 
becomes dull. This can be done by keep decreasing the opacity of the fill 
color over a specified duration in order to reach a target opacity value.

★ In JavaFX, the class javafx.animation.FadeTransition represents 
FadeTransition. We need to instantiate this class in order to create the 
appropriate Fade Transition.





Constructor:

The class contains three Constructors.

1. public TranslateTransition() : creates the new instance of 

TranslateTransition with the default parameters.

2. public TranslateTransition(Duration duration) : creates the new 

instance of TranslateTransition with the specified duration.

3. public TranslateTransition(Duration duration, Node node) : creates the 

new instance of Translate Transition with the specified duration and 

node.







Timeline:

★ An animation is driven by its associated properties, such as size, location, 
and color etc. Timeline provides the capability to update the property 
values along the progression of time. JavaFX supports key frame 
animation. In key frame animation, the animated state transitions of the 
graphical scene are declared by start and end snapshots (key frames) of 
the state of the scene at certain times. The system can automatically 
perform the animation. It can stop, pause, resume, reverse, or repeat 
movement when requested.








