
CHAPTER 8
JAVAFX UI Controls and Multimedia

-prepared by

Prof.Nensi Kansagara

SUBJECT:OOP-
I

CODE:3140705

PREPARED BY:
ASST.PROF.NENSI KANSAGARA

(CSE DEPARTMENT,ACET)

Introduction to UI
Control

★ This part of the tutorial provides you the in-depth
knowledge of JavaFX UI controls. The graphical
user interface of every desktop application
mainly considers UI elements, layouts and
behaviour.

★ The UI elements are the one which are actually
shown to the user for interaction or information
exchange. Layout defines the organization of the
UI elements on the screen. Behaviour is the
reaction of the UI element when some event is
occurred on it.

★ However, the package javafx.scene.control
provides all the necessary classes for the UI
components like Button, Label, etc. Every class
represents a specific UI control and defines some
methods for their styling.

Control Description

Label Label is a component that is used to define a
simple text on the screen. Typically, a label is
placed with the node, it describes.

Button Button is a component that controls the function
of the application. Button class is used to create a
labelled button.

RadioButton The Radio Button is used to provide various
options to the user. The user can only choose one
option among all. A radio button is either selected
or deselected.

CheckBox Check Box is used to get the kind of information
from the user which contains various choices.
User marked the checkbox either on (true) or
off(false).

TextField Text Field is basically used to get the input from
the user in the form of text.
javafx.scene.control.TextField represents
TextField

Textarea This control allows the user to enter multiple
line text.

ComboBox This control display the list of items out of
which user can select at most one item.

ListView This control displays the list of items out of
which user can select one or multiple items
from the list.

Slider This control is used to display a continuous or
discrete range of valid numeric choices and
allows the user to interact with the control.

Labeled and Label
★ javafx.scene.control.Label class represents label

control. As the name suggests, the label is the
component that is used to place any text
information on the screen. It is mainly used to
describe the purpose of the other components to
the user. You can not set a focus on the label
using the Tab key.

★ Package: javafx.scene.control
★ Constructors:
1. Label(): creates an empty Label

2. Label(String text): creates Label with the

supplied text

3. Label(String text, Node graphics): creates Label

with the supplied text and graphics

Button ★ JavaFX button control is represented by
javafx.scene.control.Button class. A
button is a component that can control the
behaviour of the Application. An event is
generated whenever the button gets
clicked.

★ How to create a Button?
★ Button can be created by instantiating

Button class. Use the following line to
create button object.

★ SYNTAX:

Button btn = new Button("My Button");

OutPut:

CheckBox ★ The Check Box is used to provide more than one
choices to the user. It can be used in a scenario
where the user is prompted to select more than
one option or the user wants to select multiple
options.

★ It is different from the radiobutton in the sense
that, we can select more than one checkboxes in
a scenerio.

★ Instantiate javafx.scene.control.CheckBox class
to implement CheckBox.

★ SYNTAX:

CheckBox checkbox = new CheckBox("Label
Name");

RadioButton ★ The Radio Button is used to provide
various options to the user. The user can
only choose one option among all. A
radio button is either selected or
deselected.

★ It can be used in a scenario of multiple
choice questions in the quiz where only
one option needs to be chosen by the
student.

★ We can group JAVAFX RadioButton
instances into a ToggleGroup.A
ToggleGroup allows at most one
RadioButton to be selected at any time.

TextField ★ Text Field is basically used to get
the input from the user in the form
of text.
javafx.scene.control.TextField
represents TextField. It provides
various methods to deal with
textfields in JavaFX. TextField can
be created by instantiating TextField
class.

TextArea ★ The TextARea control allows to enter
multiline text.The control is
represented by the class
javafx.scene.control.TextArea.

★ SYNTAX:

TextArea ta=new TextArea()

★ We can set the size of the TextArea
using setPrefHeight() and
setPrefWidth() functions.

Combo Box ★ The JavaFX ComboBox control enables users
to choose an option from a predefined list of
choices, or type in another value if none of
the predefined choices matches what the user
want to select. The JavaFX ComboBox
control is represented by the class
javafx.scene.control.ComboBox . This
JavaFX ComboBox tutorial will explain how
to use the ComboBox class.

★ Creating a ComboBox
★ SYNTAX:

ComboBox comboBox = new ComboBox();

Combo Box Adding Choices to a ComboBox

You can add choices to a ComboBox by
obtaining its item collection and add items to
it. Here is an example that adds choices to a
JavaFX ComboBox :

cb.getItems().add("Choice 1");

cb.getItems().add("Choice 2");

cb.getItems().add("Choice 3");

ListView ★ The JavaFX ListView control enables
users to choose one or more options
from a predefined list of choices. The
JavaFX ListView control is
represented by the class
javafx.scene.control.ListView . This
JavaFX ListView tutorial will explain
how to use the ListView class.

★ SYNTAX:

ListView listView = new ListView();

ListView Adding Items to a ListView

You can add items (options) to a
ListView by obtaining its item collection
and add items to it. Here is an example
that adds items to a JavaFX ListView :

listView.getItems().add("Item 1");

listView.getItems().add("Item 2");

listView.getItems().add("Item 3");

Scrollbar ★ JavaFX Scroll Bar is used to
provide a scroll bar to the user
so that the user can scroll down
the application pages. It can be
created by instantiating
javafx.scene.control.ScrollBar
class.

Slider ★ JavaFX slider is used to provide a
pane of option to the user in a
graphical form where the user
needs to move a slider over the
range of values to select one of
them. Slider can be created by
instantiating
javafx.scene.control.Slider class.

Video ★ Playing video in JavaFX is quite simple. We
need to use the same API as we have used in
the case of playing Audio files. In the case of
playing video, we need to use the MediaView
node to display the video onto the scene.

★ For this purpose, we need to instantiate the
MediaView class by passing the Mediaplayer
object into its constructor. Due to the fact that,
MediaView is a JavaFX node, we will be able
to apply effects to it.

★ In this part of the tutorial, we will discuss the
steps involved in playing video media files
and some examples regarding this.

Steps to play video files in
JavaFX

1. Instantiate the javafx.scene.media.Media class by

passing the location of the audio file in its constructor.

Use the following line of code for this purpose.

1. Media media = new

Media("http://path/file_name.mp3");

2. Pass the Media class object to the new instance of

javafx.scene.media.MediaPlayer object.

1. Mediaplayer mediaPlayer = new

MediaPlayer(media);

3. Invoke the MediaPlayer object's play() method when

onReady event is triggered.

1. mediaPlayer.setAutoPlay(true);

 4.Instantiate MediaView class and pass Mediaplayer object into

its constructor.

1. MediaView mediaView = new MediaView

(mediaPlayer)

5.Add the MediaView Node to the Group and configure Scene.

Group root = new Group();

root.getChildren().add(mediaView)

Scene scene = new Scene(root,600,400);

primaryStage.setTitle("Playing Video");

primaryStage.show();

Audio ★ We can load the audio files with extensions
like .mp3,.wav and .aifff by using JavaFX
Media API. We can also play the audio in
HTTP live streaming format. It is the new
feature introduced in JavaFX 8 which is
also known as HLS.

★ Playing audio files in JavaFX is simple.
For this purpose, we need to instantiate
javafx.scene.media.Media class by
passing the audio file path in its
constructor. The steps required to be
followed in order to play audio files are
described below.

Audio 1. Instantiate the javafx.scene.media.Media class by

passing the location of the audio file in its constructor.

Use the following line of code for this purpose.

1. Media media = new

Media("http://path/file_name.mp3");

2. Pass the Media class object to the new instance of

javafx.scene.media.MediaPlayer object.

1. Mediaplayer mediaPlayer = new

MediaPlayer(media);

3. Invoke the MediaPlayer object's play() method when

onReady event is triggered.

1. MediaPlayer.setAutoPlay(true);

Audio ★ The Media File can be located on a
web server or on the local file system.
SetAutoPlay() method is the short-cut
for setting the setOnReady() event
handler with the lambda expression to
handle the event.

