AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CHAPTER 9
BINARY I/O0,RECURSION AND GENERICS

‘ t W A - ——
gD m 1_m
—— LDMLJFJ

Generlcs @ '

SUBJECT:O0P-I PREPARED BY:

CODE:3140705 ASST.PROF.NENSI KANSAGARA AMIRAJ
| (C SE DEPARTMENT, ACET) COLLEGE OF ENGINEERING & TECHNOLOGY

BINARY
1/0

INTRODUCTION TO 1I/O
PROGRAMMING

-

-
9

Java I/0O (Input and Output) is used to process the input and produce the output.

Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the
classes required for input and output operations.

We can perform file handling in Java by Java I/O API

In this Java File 10 tutorial, we show you how to read and write binary files using both legacy File
I/O API and new File I/O API (NIO). The legacy API (classes in the java.io.* package) is perfect
for manipulating low-level binary I/O operations such as reading and writing exactly one byte at a
time, whereas the NIO API (classes in the java.nio.* package) is more convenient for reading and
writing the whole file at once, and of course, faster than the old File I/O API.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

HANDLING IN JAVA

syntax:

PrintWriter o =new printwriter(“input.txt”);
o.print(“I love my country”);

Example:

Scanner 1 = new Scanner(new File(input.txt));

System.out.println(i.nextline());

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

CONCEPT OF STREAM

=> Astream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it is like a
stream of water that continues to flow.
=> InJava, 3 streams are created for us automatically. All these streams are attached with the console.
€ 1) System.out: standard output stream
€ 2) System.in: standard input stream
€ 3) System.err: standard error stream
=> Let's see the code to print output and an error message to the console.
€ System.out.println("simple message");

€ System.err.println("error message");

=> Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character ‘\ M I R ’\J

System.out.println((char)i);//will print the character COLLEGE OF ENGINEERING & TECHNOLOGY

v

v b

The java.io package contains all the classes required for input output
operations.

All streams represent an input source and an output destination.

The stream in the java.io package supports all the datatype including
primitive.

A stream can be defined as a sequence of data.

There are two kinds of Streams

€ InputStream : The InputStream is used to read data from a source.

€ OutputStream : The OutputStream is used for writing data to a destination.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

TEXT AND BINARY 1/0

=> All the programming languages provide support for standard I/O where the user's program can

take input from a keyboard and then produce an output on the computer screen. If you are aware

of C or C++ programming languages, then you must be aware of three standard devices STDIN,

STDOUT and STDERR. Similarly, Java provides the following three standard streams —

€ Standard Input — This is used to feed the data to user's program and usually a keyboard is used
as standard input stream and represented as System.in.

€ Standard Output — This is used to output the data produced by the user's program and usually
a computer screen is used for standard output stream and represented as System.out.

€ Standard Error — This is used to output the error data produced by the user's program and
usually a computer screen is used for standard error stream and represented as System.err.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

BINARY IO CLASSES

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

FILEINPUTSTREAM

\ 20 2 2

Java FileInputStream class obtains input bytes from a file.

It 1s used for reading streams of raw bytes such as image data.
For reading streams of characters, consider using FileReader.
It should be used to read byte-oriented data for example to
read 1mage, audio, video etc.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

—\ - 1010101010 —\ - 1010101010

File Console Socket File Console Socket
InputStream | | OutputStream
| Java o
Source — 1010101010 — . .. — 1010101010 — Destination
Application
Read Write

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Java FileInputStream class declaration

Let's see the declaration for java.io.FileInputStream class:

1. public class FileInputStream extends InputStream

InputStream

T
! \ \

ByteArraylnputStream

FilelnputStream FilterlnputStream

T
\ \ \

DatalnputStream

PipedInputStream ObjectinputStream

BufferedInputStream PushBackInputStream

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Method

int available()
int read()
int read(byte[] b)

int read(byte[] b, int off, int
len)

long skip(long x)
FileChannel getChannel()
FileDescriptor getFD()

protected void finalize()

void close()

Description

It is used to return the estimated number of bytes that can be read from the input stream.
It is used to read the byte of data from the input stream.

It is used to read up to b.length bytes of data from the input stream.

It is used to read up to len bytes of data from the input stream.

It is used to skip over and discards x bytes of data from the input stream.
It is used to return the unique FileChannel object associated with the file input stream.
It is used to return the FileDescriptor object.

It is used to ensure that the close method is call when there is no more reference to the file input

stream.

It is used to closes the stream.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

package com.javatpoint;

import java.io.FileInputStream;
public class DataStreamExample {

public static void main(String args[]){

try{
FileInputStream fin=new FileInputStream("D:\\testout.txt");
int i=0;

while((i=fin.read())!=-1){
System.out.print((char)i);
¥
fin.close();
ycatch(Exception e){System.out.printin{e); *
¥

; AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

FILEOUTPUTSTREAM

—

Java FileOutputStream 1s an output stream for writing data to a
file.

If you have to write primitive values then use FileOutputStream
But for character-oriented data, prefer FileWriter.

But you can write byte-oriented as well as character-oriented

data.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Methods of fileoutputstream

Method

protected void finalize()

void write(byte[] ary)

void write(byte[] ary, int off, int
len)

void write(int b)

FileChannel getChannel()

FileDescriptor getFD()

void close()

Description

It is used to clean up the connection with the file output stream.
It is used to write ary.length bytes from the byte array to the file output stream.

It is used to write len bytes from the byte array starting at offset off to the file output

stream.

It is used to write the specified byte to the file output stream.

It is used to return the file channel object associated with the file output stream.
It is used to return the file descriptor associated with the stream.

It is used to closes the file output stream.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

import java.io.FileOutputStream;
public class FileOutputStreamExample {
public static void main(String args[]){
try{

FileQutputStream fout=new FileOutputStream("D:\\testout.txt");
fout.write(65);
fout.close();
System.out.printin("success...");

jcatch(Exception e){System.out.printin(e); }

Output:

Success. ..

| - AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

FILTERINPUTSTREAM

I ¥

Java FilterInputStream class implements the InputStream. It contains
different sub classes as BufferedInputStream, DatalnputStream for
providing additional functionality. So it is less used individually.

Java FilterInputStream class declaration

Let's see the declaration for java.io.FilterInputStream class
€ public class FilterInputStream extends InputStream

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-datainputstream-class

Java FilterInputStream class Methods

Method

int available()

int read()

int read(byte[] b)

long skip(long n)

boolean markSupported()

void mark(int readlimit)

void reset()

void close()

Description

It is used to return an estimate number of bytes that can be read from the input stream.
It is used to read the next byte of data from the input stream.

It is used to read up to byte.length bytes of data from the input stream.

It is used to skip over and discards n bytes of data from the input stream.

It is used to test if the input stream support mark and reset method.

It is used to mark the current position in the input stream.

It is used to reset the input stream.

It is used to close the input stream.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

import java.io.;
public class FilterExample {
public static void main(String[] args) throws I0Exception {
File data = new File("D:\\testout.txt");
FileInputStream file = new FileInputStream(data);
FilterInputStream filter = new BufferedInputStream(file);
intk =0;
while((k=filter.read())!=-1){
System.out.print((char)k);

}
file.close();

filter.close();

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

FILTEROUTPUTSTREAM

-
-

Java FileOutputStream is an output stream used for writing data to a file.

If you have to write primitive values into a file, use FileOutputStream class. You can write
byte-oriented as well as character-oriented data through FileOutputStream class. But, for
character-oriented data, it is preferred to use FileWriter than FileOutputStream.

FileOutputStream class declaration

€ Let's see the declaration for Java.io.FileOutputStream class:
€ public class FileOutputStream extends OutputStream

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/java-file-class
https://www.javatpoint.com/java-filterwriter-class

Method

protected void finalize()
void write(byte[] ary)

void write(byte[] ary, int off, int

len)

void write(int b)
FileChannel getChannel()
FileDescriptor getFD()

void close()

Description

It is used to clean up the connection with the file output stream.
It is used to write ary.length bytes from the byte array to the file output stream.

It is used to write len bytes from the byte array starting at offset off to the file output

stream.

It is used to write the specified byte to the file output stream.

It is used to return the file channel object associated with the file output stream.
It is used to return the file descriptor associated with the stream.

It is used to closes the file output stream.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

import java.io.FileOutputStream;
public class FileOutputStreamExample {
public static void main(String args[]){
try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt");
fout.write(65);
fout.close();
System.out.printin("success...");

rcatch(Exception e){System.out.printin(e); }

Output:

Success...

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

DATAINPUTSTREAM

Java DatalnputStream class allows an application to read primitive data from the input stream in a
machine-independent way.

Java application generally uses the data output stream to write data that can later be read by a data input
stream.

Java DatalnputStream class declaration

Let's see the declaration for java.io.DatalnputStream class:

public class DatalnputStream extends FilterInputStream implements Datalnput ‘\ M I R ’\J

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/object-and-class-in-java

Java DatalnputStream class Methods

Method

int read(byte[] b)

int read(byte[] b, int off, int len)
int readInt()

byte readByte()

char readChar()

double readDouble()
boolean readBoolean()
int skipBytes(int x)
String readUTF()

void readFully(byte[] b)

void readFully(byte[] b, int off, int len)

Description

It is used to read the number of bytes from the input stream.
It is used to read len bytes of data from the input stream.

It is used to read input bytes and return an int value.

It is used to read and return the one input byte.

It is used to read two input bytes and returns a char value.

It is used to read eight input bytes and returns a double value.

It is used to read one input byte and return true if byte is non zero, false if byte is zero.

It is used to skip over x bytes of data from the input stream.
It is used to read a string that has been encoded using the UTF-8 format.
It is used to read bytes from the input stream and store them into the buffer array.

It is used to read len bytes from the input stream.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

package com.javatpoint;
import java.io.™;
public class DataStreamExample {
public static void main(String[] args) throws IOException {
InputStream input = new FileInputStream("D:\\testout.txt");
DatalnputStream inst = new DatalnputStream(input);
int count = input.available();
byte[] ary = new byte[count];
inst.read(ary);
for (byte bt : ary) {
char k = (char) bt;
System.out.print(k+"-");
¥
¥
b

Here, we are assuming that you have following data in "testout.txt" file:

JAVA

" AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY
J-A-V-A

DATAOUTPUTSTREAM

=>» Java DataOutputStream class allows an application to write primitive Java data
types to the output stream in a machine-independent way.

=> Java application generally uses the data output stream to write data that can later
be read by a data input stream.

=> Java DataOutputStream class declaration

€ Let's see the declaration for java.io.DataOutputStream class:
€ public class DataOutputStream extends FilterOutputStream implements

DataOutput
p AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-tutorial

Method Description
int size() It is used to return the number of bytes written to the data output stream.
void write(int b) It is used to write the specified byte to the underlying output stream.

void write(byte[] b, int off, int len) It is used to write len bytes of data to the output stream.

void writeBoolean(boolean v) It is used to write Boolean to the output stream as a 1-byte value.

void writeChar(int v) It is used to write char to the output stream as a 2-byte value.

void writeChars(String s) It is used to write string to the output stream as a sequence of characters.
void writeByte(int v) It is used to write a byte to the output stream as a 1-byte value.

void writeBytes(String s) It is used to write string to the output stream as a sequence of bytes.

void writeInt(int v) It is used to write an int to the output stream

void writeShort(int v) It is used to write a short to the output stream.

void writeShort(int v) It is used to write a short to the output stream.

void writeLong(long v) It is used to write a long to the output stream.

void writeUTF(String str) It is used to write a string to the output stream using UTF-8 encoding in portable manner. “ M I n ’\J

COLLEGE OF ENGINEERING & TECHNOLOGY
void flush() It is used to flushes the data output stream.

package com.javatpoint;

import java.io.™;
public class OutputExample {
public static void main(String[] args) throws IOException {

FileOutputStream file = new FileOutputStream(D:\\testout.txt);
DataQutputStream data = new DataOutputStream(file);
data.writeInt(65);
data.flush();
data.close();

System.out.printIn("Succcess...");

Output:

Succcess...

testout.txt:

b

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

BUFFEREDINPUTSTREAM

=> Java BufferedInputStream class is used to read information from stream. It internally uses buffer
mechanism to make the performance fast.

=> The important points about BufferedInputStream are:
€ When the bytes from the stream are skipped or read, the internal buffer automatically refilled

from the contained input stream, many bytes at a time.

€ When a BufferedInputStream is created, an internal buffer array is created.

=> Java BufferedInputStream class declaration

€ Let's see the declaration for Java.io.BufferedInputStream class:
€ public class BufferedInputStream extends FilterInputStream

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-8-stream
https://www.javatpoint.com/array-in-java

Java BufferedInputStream class methods

Method

int available()

int read()

int read(byte[] b, int
off, int In)

void close()
void reset()

void mark(int

readlimit)
long skip(long x)

boolean

markSupported()

Description

It returns an estimate number of bytes that can be read from the input stream without blocking by the

next invocation method for the input stream.
It read the next byte of data from the input stream.

It read the bytes from the specified byte-input stream into a specified byte array, starting with the given

offset.
It closes the input stream and releases any of the system resources associated with the stream.
It repositions the stream at a position the mark method was last called on this input stream.

It sees the general contract of the mark method for the input stream.

It skips over and discards x bytes of data from the input stream.

It tests for the input stream to support the mark and reset methods.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

import java.io.™;
public class BufferedInputStreamExample{
public static void main(String args[]){
try{
FileInputStream fin=new FileInputStream("D:\\testout.txt");
BufferedInputStream bin=new BufferedInputStream(fin);
inti;
while((i=bin.read())!=-1){
System.out.print((char)i);
¥
bin.close();
fin.close();
Jcatch(Exception e){System.out.printin(e); }
5
b

Here, we are assuming that you have following data in "testout.txt" file:

javaTpoint

4 »

AMIRAJ

javaTpoint COLLEGE OF ENGINEERING & TECHNOLOGY

BUFFEREDOUTPUTSTREAM

e 2

Java BufferedOutputStream class is used for buffering an output stream. It internally uses
buffer to store data. It adds more efficiency than to write data directly into a stream. So, it
makes the performance fast.

For adding the buffer in an OutputStream, use the BufferedOutputStream class. Let's see
the syntax for adding the buffer in an OutputStream:

€ OutputStream os= new BufferedOutputStream(new FileOutputStream("D:\\IO

Package\\testout.txt"));

Java BufferedOutputStream class declaration

@ Let's see the declaration for Java.io.BufferedOutputStream class:
€ public class BufferedOutputStream extends FilterOutputStream

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/object-and-class-in-java

Java BufferedOutputStream class methods

Method Description

void write(int b) It writes the specified byte to the buffered output stream.

void write(byte[] b, int off, It write the bytes from the specified byte-input stream into a specified byte array, starting with
int len) the given offset

void flush() It flushes the buffered output stream.

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

package com.javatpoint;

import java.io.™;

public class BufferedOutputStreamExample{

public static void main(String args[])throws Exception{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");
BufferedOutputStream bout=new BufferedOutputStream(fout);
String s="Welcome to javaTpoint.";
byte b[]=s.getBytes();
bout.write(b);
bout.flush();
bout.close();
fout.close();

System.out.printin("success");

OQutput:
Success

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY
Welcome to javaTpoint.

OBJECT 1/0

—

v

The object I/O supports ObjectInputStream and ObjectOutputStream
classes.These classes to perform I/O operations for object in addition
to primitive data types.

The ObjectInputStream is a subclass of InputStream and implements
Objectlnput and ObjectStramConstant.

Public ObjectInputStream(InputStream in)

public ObjectOutputStream(OutputStream out)

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

fovea fo fnputStream

P

- D ()c'..‘,";‘(v'.\".";_":.'.':‘.'(_ " Istonss

S etase 2oa | "
.l"" 010 IA O'O.U."l"nc.c'c'

o

Java 10, ObjectinputSiream R __D Java to Objectingu

ObjectlnputStream(m: InputStream) readObjecti): Object Readds an object

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

THE SERIALIZABLE
INTERFACE

=> Serializable is a marker interface (has no data
member and method). It is used to "mark"
Java classes so that the objects of these
classes may get a certain capability. The
Cloneable and Remote are also marker
interfaces.

=> It must be implemented by the class whose
object you want to persist.

=> The String class and all the wrapper classes
implement the java.io.Serializable interface
by default.

OBJECT

Serialization

~ STREAM

Deserialization

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

RANDOM ACCESS FILES

=> This class 1s used for reading and writing to randomaccessfile. A
random access file behaves like a large array of bytes. There 1s a
cursor implied to the array called file pointer, by moving the cursor
we do the read write operations. If end-of-file is reached before the
desired number of byte has been read than EOFException is thrown. It
1s a type of IOException.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.javatpoint.com/object-class
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/c-pointers
https://www.javatpoint.com/throw-keyword

Modifier
and Type

void

FileChannel
int
String

void

void

void

void
int
long

void

Method

close()

getChannel()
readInt()
readUTF()

seek(long pos)

writeDouble(double
v)

writeFloat(float v)

write(int b)
read()
length()

seek(long pos)

Method

It closes this random access file stream and releases any system resources associated with

the stream.

It returns the unigue FileChannel object associated with this file.
It reads a signed 32-bit integer from this file.

It reads in a string from this file.

It sets the file-pointer offset, measured from the beginning of this file, at which the next

read or write occurs.

It converts the double argument to a long using the doubleToLongBits method in class
Double, and then writes that long value to the file as an eight-byte quantity, high byte first.

It converts the float argument to an int using the floatToIntBits method in class Float, and
then writes that int value to the file as a four-byte quantity, high byte first.

It writes the specified byte to this file.
It reads a byte of data from this file.

It returns the length of this file.

It sets the file-pointer offset, measured from the beginning of this file, at which the next “ M I n ’\J

read or write occurs. COLLEGE OF ENGINEERING & TECHNOLOGY

import java.io.IOException;
import java.io.RandomAccessFile;

public class RandomAccessFileExample {
static final String FILEPATH ="myFile. TXT";
public static void main(String[] args) {
try {
System.out.printin(new String(readFromFile(FILEPATH, 0, 18)));
writeToFile(FILEPATH, "I love my country and my people”, 31);
} catch (IOException e) {
e.printStackTrace();

¥
private static byte[] readFromFile(String filePath, int position, int size)

throws IOException {
RandomAccessFile file = new RandomAccessFile(filePath, "r");
file.seek(position);
byte[] bytes = new byte[size];
file.read(bytes);
file.close();
return bytes;

¥
private static void writeToFile(String filePath, String data, int position)

throws IOException {
RandomAccessFile file = new RandomAccessFile(filePath, "rw");
file.seek(position);
file.write(data.getBytes());
file.close();

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

RECURSION

PROBLEM SOLVING USING RECURSION

=> Recursion in java is a process in which a method calls itself continuously. A

e 2
-

method 1n java that calls itself 1s called recursive method.
It makes the code compact but complex to understand.

Syntax:

¢

\ 4
4
\ 4

returntype methodname(){
//code to be executed

methodname();//calling same method

b

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

int factorialiint n)

if |

n <= 1) n = 3

return 1:;

else

return n * factorial(n - 1):

l recursive call

int factorialiint n)
if (n <= 1)

return 1;

I

= 2

else

return n * factorialin - 1);

'

recursive

int factorial(int n)

if (n <= 1)

return 1;

else

In

= 1

return n * factorialin - 1):;

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

RECURSIVE HELPER METHODS

1. we need one helper method where we will pass original string , prefix and
one list for result.

2. we will use recursion here. and base case is string is null, in that case we
will be returning prefix+orginal string.

3. 1itially prefix is null and here we will check the 1st character of string is
character or not if character we remove that character from original string
and will add the same character to prefix and will call uppercase and
lowercase method.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

TAIL RECURSION

=> A tail-recursive function is just a function whose very the last
action 1s a call to itself. Tail-Call Optimisation(TCO) lets us
convert regular recursive calls into tail calls to make
recursions practical for large inputs, which was earlier leading
to stack overflow error in normal recursion scenario

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

public class TailRecDemo {
public static void main(String []args)
{
fun(3);
b

Public static void fun(int n)

{

System.out.println(n);

if(n>0)

fun(n-1);

} AMIRAJ
} COLLEGE OF ENGINEERING & TECHNOLOGY

Mode of Implemented using loops Function calls itself

implementation

State Defined by the control Defined by the parameter values
variable’s value stored in stack

Progression The value of control variable | The function state converges
moves towards the value in towards the base case
condition

Termination Loop ends when control Recursion ends when base case
variable’s value satisfies the becomes true
condition

Code Size Iterative code tends to be Recursion decrease the size of code
bigger in size

No Termination | Infinite Loops uses CPU Infinite Recursion may cause Stack

State Cycles Overflow error or it might crash the

system
Execution Execution is faster Execution is slower

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

GENERICS

What is generic programming?

=> Java Generic methods and generic classes enable programmers to specify,
with a single method declaration, a set of related methods, or with a single
class declaration, a set of related types, respectively.

=> Generics also provide compile-time type safety that allows programmers to
catch invalid types at compile time.

=> Using Java Generic concept, we might write a generic method for sorting an
array of objects, then invoke the generic method with Integer arrays, Double
arrays, String arrays and so on, to sort the array elements.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

What is the need for generic?

=> It saves the programmers burden of creating separate
methods for handling data belonging to different data

types.
It allows the code reusability

v ¥

Compact code can be created.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Defining generic classes and interfaces

public class Test<T>
{
public Test () {val=null;}
public Test (T val)
{

this.val=val;

}
public getval()

{

return val;

}
public setval()

{

val= newValue;

}

private T val; //variable defined as a generics|

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Generic methods

=> Generic methods are methods that introduce their own type parameters.
This is similar to declaring a generic type, but the type parameter scope is
limited to the method where it is declared. Static and non-static generic
methods are allowed, as well as generic class constructors.

=> The syntax for a generic method includes a list of type parameters, inside
angle brackets, which appears before the method's return type. For static
generic methods, the type parameter section must appear before the

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

method's return type.

package javaapplicationoverloadprogl;
import java.io.*;

import java.util.*;

puklic class JavaApplicationOverloadProgl {

pubklic static void display(float[]a)
{
for (int i=0;i<5;i++)
System.out.printf("sf",af[i]):

pubklic static void display(int[]a)
{
for(int i=0;i<5;i++)
System.out.printf("xd",a[i]):

public static void display(char[]a)
{
for (int i=0;i<5;1i++)

System.out.printf ("%c",a[i]): “Mln'\J

COLLEGE OF ENGINEERING & TECHNOLOGY

] pubklic static void main(String[] args) {
floac[] dbl_a={11,22,33,44,55};
int[] int_a={1,2,3,4,5};

char[]char a={'aA','B','C','D','E"};
System.out.println("\n The Float elements are:")
display(dbl_a):

System.ouft.println("\n The int elements are:"):;
display(int_a):

System.out.println("\n The char elements are:"):;

display(char_a):

- JavaApplicationOverloadProg1 (run) X

run:

The Float elements are:
11.00000022.00000033.00000044.00000055.000000
The int elements are:
12345
The char elements are:
ABCDEBUILD SUCCESSFUL (total time: 0 seconds)

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

package javaapplicationoverloadprogl;
[E import java.io.*;
import java.util.?*;
pubklic class JavaApplicationOverloadProgl {

public static <T> wvoid display(T[]a)

= {
for(int i=0;i<5;i++)
System.out.printf("ss",a[i]):
& }
= pukblic static void main(String[] args) {

floac[] dbl a={11,22,33,44,55};
int[] int_a={1,2,3,4,5};

char[]char a={'a','B','C','D','E"};
System.out.println("\n Th
display(dbl a):
System.out.println("\n The int elements are:");
display(int a):

System.out.println("\n The char elements are:");
display(char a):

m ~
il
i

= }

it - JavaApplicationOverloadProg1 (run) X

run:

The Float elements are:

11.00000022.00000033.00000044.00000055.000000
The int elements are:

12345 COLLEGE OF ENGINEERING & TECHNOLOGY

The char elements are:
ABCDEBUILD SUCCESSFUL (total time: 0 seconds)
1

Raw types and backward compatibility

Generic class or interface is used without specifying a concrete type.
It enables backward compatibility with earlier versions of java

Vb

Example:
GenericsStack stack= new GenericsStack();
This 1s almost equivalent to

GenericsStack <Object> stack = new GenericsStack<Object>();

=> The raw types are unsafe.)\M l Rl\J

COLLEGE OF ENGINEERING & TECHNOLOGY

Concept of bounded type

=> There may be times when you want to restrict the types that can be used as type arguments in a parameterized
type. For example, a method that operates on numbers might only want to accept instances of Number or its

subclasses. This is what bounded type parameters are for.
€ Sometimes we don’t want whole class to be parameterized, in that case we can create java generics
method. Since constructor is a special kind of method, we can use generics type in constructors too.
€ Suppose we want to restrict the type of objects that can be used in the parameterized type. For example
in a method that compares two objects and we want to make sure that the accepted objects are

Comparables.

€ The invocation of these methods is similar to unbounded method except that if we will try to use any

class that is not Comparable, it will throw compile time error. ‘\ M I R ’\J

COLLEGE OF ENGINEERING & TECHNOLOGY

https://www.geeksforgeeks.org/generics-in-java/

package javaapplicationboundedtypedemo;
public class JavaApplicationBoundedTypeDemo {

class Test <T extends Number>

{
T €5
public Test (T t)
{
this. e =7
}
public T getT()
{
return t;
}
}
public static void main(String[] args)
{
Test<Number>objl = new Test<Number>(123);
System.out.println("The intger is:"+objl.getT()):
Test<String>0obj2 = new Test<String>("I am St
System.out.println("The string 1s:"+obj2.getT()):
}

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Wildcard generic types

=> The question mark (?) is known as the wildcard in generic programming . It represents an
unknown type. The wildcard can be used in a variety of situations such as the type of a
parameter, field, or local variable; sometimes as a return type. Unlike arrays, different
instantiations of a generic type are not compatible with each other, not even explicitly. This
incompatibility may be softened by the wildcard if ? is used as an actual type parameter.

=> There are three ways to use wildcards

1.Unbounded wildcard

2.Upper bound wildcard

3.Lower bound wildcard ‘\ M I R ’\J

COLLEGE OF ENGINEERING & TECHNOLOGY

Unb Ounded package javaapplicationunboundedcarddemo;

import java.util.Arrays;

Wildcard % import java.util.List;

puklic class JavaApplicationUnboundedCardDemo {
=> These wildcards can be used

When you Want tO relax the public static wvoid main(String[] args) {
Lo . List<Integer> listl= Arrays.asList(10,20,30,40):
restrictions on a variable. For

List<String> 1l1list2 = Arrays.asList("ana", "BBB","CCC"):;
example, say you want to Display(listl):
Display(list2):;

write a method that works on
List < integer >, List < double

private static void Display(List<?> mylist)

>, and List < number >, you T {
. . System.ocut.printlin(mylist)
can do this using an upper)
bounded Wﬂdcard ut - JavaApplicationUnboundedCardDemo (run) X i
=> To declare an upper-bounded EX0; 20,40, &9
[AA2, BBB, CCC]
Wlldcard, use the Wlldcard BUILD SUCCESSFUL (total time: 0 seconds)
character (‘?”), followed by
the extends keyword,

followed by its upper bound. ‘\ M I R '\J

COLLEGE OF ENGINEERING & TECHNOLOGY

Upper Bound
wildcard

->

This wildcard type is specified
using the wildcard character (?),
for example, List. This is called
a list of unknown type. These
are useful in the following cases
€ When writing a method

which can be employed
using functionality
provided in Object class.
€ When the code is using
methods in the generic
class that don’t depend on

the type parameter

package javaapplicationunboundedcarddemo;

? import java.util.Arrays:;

import java.util.List;

puklic class JavaApplicationUnboundedCardDemo {
=] public static void main(String[] args) {

List<Integer> listl= Arrays.asList(10,20,30,40);
List<Double> list2=Arrays.asList(11.11,22.22,33.33,44.44):

System.ocut.printin(sum(listl))
System.ocut.println(sum(list2))

= }

private static double sum(List<? extends Number> mylist)

= {

double total=0.0;
for (Number i:mylist)
{
total+=i.doubleValue ()

return total;

- }

t - JavaApplicationUnboundedCardDemo (run) Xi

100.0

TR
BUILD SUCCESSFUL (total time: 0 seconds)

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Lower Bound
wildcard

=> It 1s expressed using
the wildcard character
(‘?”), followed by the
super keyword,
followed by its lower
bound: <? super A>.
€ Syntax:

Collectiontype <?

super A>

package javaapplicationunkboundedcarddemo;
E import java.util.Arrays:;
import java.util.List;
puklic class JavaApplicationUnboundedCardDemo {

] public static void main(String[] args) {

List<Integer> listl= Arrays.asList(4,5,6,7):
printOnliyIntegerClassorSuperClass(listl);

List<Number> list2= Arrays.asList(4,5,6,7):

printOnlyIntegerClassorSuperClass(list2);

public static void printOnlyIntegerClassorSuperClass(List<? super Integer> list)

= {
E System.ocut.printlin(list):;
}

1
i

t - JavaApplicationUnboundedCardDemo (run) X!

[4, S, €,

[4, S, €, 71
UCC,

BUILD SU

7]

ESSFUL (total time: 0 seconds)

AMIRANJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Erasure and restrictions on generics

=> Type Erasure rules

¢

\ g
\ g
¢

Replace type parameters in generic type with their bound if bounded type
parameters are used.

Replace type parameters in generic type with Object 1f unbounded type
parameters are used.

Insert type casts to preserve type safety.

Generate bridge methods to keep polymorphism in extended generic types.

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Restrictions on generics

It cannot instantiate Generic Types with primitive data types.

It cannot create instance of Type Parameter

[t cannot declare static field whose types are types parameter

[t cannot use cast or instances of operators with parameterized types.
It cannot create Array of parameterized types.

[t cannot create,catch or throw Objects of parameterized types.

A AR o A

It cannot overload a method where the formal parameter Types of

AMIRNJ

COLLEGE OF ENGINEERING & TECHNOLOGY

Each Overloaded Erase to the same Raw Type.

AMIRANJ

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

