CHAPTER: GRAPH THEORY

(1) Define with example: graph, nodes and edges.
(2) Define with example: directed graph, undirected graph, mixed graph, multi graph, simple graph, weighted graph and null graph.
(3) Define with example: isomorphism of graphs.
(4) Define with example: degree of a node, odd node, even node, pendant node and isolated node for undirected graph.
(5) Define with example: indegree, outdegree and total degree for directed graph.
(6) Check whether the following pair of graphs G \& H are isomorphic or not with description.
(A).

(B)

G

H
(7) Define with example: indegree, outdegree and total degree for directed graph.
(8) Define with example: indegree, outdegree and total degree for directed graph.

DEPARTMENT: H \& A.Sc.
SEMESTER : 4
SUBJECT NAME: DM
SUBJECT CODE : 3140708
FACULTY NAME : PARESH PATEL

(9)	Determine the number of edges in a graph with 6 nodes, 2 of degree 4 and 4 of degree 2. Draw two such graphs.
(10)	Find whether K_{6} and $\mathrm{K}_{3,3}$ graphs are isomorphic or not?
(11)	Draw a graph which contains an Eulerian circuit.
(12)	Draw a graph which contains an Eulerian path but does not contain an Eulerian circuit.
(13)	Find under what condition $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ the complete bipartite graph will have an Eulerian circuit.
(14)	Hamiltonian circuit exists in complete bipartite graph. Justify your answer.
(15)	Find Hamiltonian path and a Hamiltonian circuit in $\mathrm{K}_{4,3}$.
	CHAPTER:TREES
(16)	Define withexample: acyclic graph, tree, directed tree, forest, root, leaf node, branch node and level of a node.
(17)	Define with example: binary tree, complete binary tree, m-ary tree and complete m- ary tree.
(18)	Which trees are complete bipartite graphs?
(19)	How many internal vertices does a full binary tree with h levels have?
(20)	What is total number of nodes in a full binary tree with 20 leaves?

CHAPTER: RELATION AND PARTIAL ORDERING	
(1)	$A=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,6,8,9\}$ aRb iff $\mathrm{b}=\mathrm{a}^{2}$ then find relation matrix M_{R}.
(2)	$A=\{1,2,3,4,6\}=B, \mathrm{aRb}$ iff a / b (a divides b) then find relation matrix M_{R}.
(3)	$A=\{1,2,3,4,8\}, \mathrm{aRb}$ iff a / b (a divides b) then find the diagraph of relation.
(4)	Define the following terms with example: Binary relation, Domain, Range, Reflexive, Symmetric, Transitive relation.
(5)	Give example of a relation which is (a) neither reflexive nor irreflexive, (b) both symmetric and antisymmetric.
(6)	Show whether the following relation are transitive: $\mathrm{R}_{1}=\{(1,1)\}, \mathrm{R}_{2}=\{(1,2),(2,2)\}$ $\mathrm{R}_{2}=\{(1,2),(2,3),(1,3),(2,1)\}$.
(7)	Let $\mathrm{X}=\{1,2,3,4\}$ and $\mathrm{R}=\{(x, y): x>y\}$. Draw the graph of R and give its matrix.
(8)	Define with examples: Partition, Equivalence relation, Equivalence class, Transitive closure.
(9)	Let $\mathrm{X}=\{1,2,3,4,5,6,7\}$ and $\mathrm{R}=\{(x, y) ; x-y$ is divisible by 3$\}$. Show that R is an equivalence relation. Draw the graph of R .
(10)	Let $\mathrm{X}=\{1,2,3,4,5,6,7\}$ and $\mathrm{R}=\{(x, y) ; x-y$ is even $\}$. Show that R is an equivalence relation.
(11)	Define with examples: Partial ordered relation, Partial ordered set, Totally ordered set.
(12)	If A is the set of all points in a plane, the relation 'at the same distance from the origin as' is an equivalence relation.
(13)	Find the transitive closure of R by Warshall's algorithm. where $A=\{1,2,3,4,5,6\}$ and $\mathrm{R}=\{(x-y):\|x-y\|=2\}$.
(14)	Give a relation which is both a partial ordered relation and equivalence relation on a set.
(15)	Draw the digraph for the following relation and determine whether the relation is reflexive, symmetric, transitive and antisymmetric. $A=\{1,2,3,4,5,6,7,8\}$ and let $x R y$ whenever y is divisible by x.
(16)	Let R be the relation on set A . $\mathrm{A}=\{5,6,8,10,28,36,48\}$. Let $\mathrm{R}=\{(x, y) ; x$ is divisior of $y\}$. Draw the Hasse diagram.
(17)	Define with examples: Hasse diagram and Lattice.
(18)	Draw the Hasse diagram of the following sets under the partial ordering relation 'divides' and indicate those which are chains:(1) $\{2,4,12,24\}$ (2) $\{1,3,5,15,30\}$.
(19)	Let A be set of factor of positive integer m and relation is divisibility on A.i.e. $\mathrm{R}=\{(x, y) ; x, y \in A, x$ divides $y\}$. For $\mathrm{m}=45$ show that poset (A, \leq) is lattice. Draw the Hasse diagram and give join and meet for the lattice.
(20)	$A=\{2,3,4,6,8,12,24,36\}$ is a Poset (A, \leq).

