Assignment: 1

1. Explain cylindrical coordinate system in brief. Also write the equations of differential length, differential surfaces and differential volume elements.
2. Obtain the spherical co-ordinates of 10 āx at the point $P(x=-3, y=2, z=4)$
3. Given the points $\mathrm{A}(\mathrm{x}=2, \mathrm{y}=3, \mathrm{z}=-1)$ and $\mathrm{B}(\mathrm{r}=4, \theta=25, \Phi=120)$ Find (a) The spherical co-ordinates of A (b) The Cartesian co-ordinates of B (c) The distance from A to B.
4. Let each of the vectors $A=5 a x-a y+3 a z, B=-2 a x+2 a y+4 a z$ and $C=3 a y-4 a z$ extend outward from the origin of a Cartesian coordinate system to points A, B

5. Given COLLEGE OF ENGINEERING, \& TECHNOLOGYit vector in cylindrical coordinates at point B directed towards point A.
6. Derive the equation of total electric field intensity in vector form due to infinite uniform sheet charge distribution in free space.
7. A dielectric-free space interface has the equation $3 x+2 y+z=12 m$. The origin side of the interface has $\varepsilon r 1=3$ and $\mathrm{E} 1=2 \bar{a} \mathrm{x}+5 \overline{\mathrm{a} z}(\mathrm{~V} / \mathrm{m})$. Find E2.
