Module 1	<u>VECTOR ANALYSIS</u>						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	Explain Cartesian co-ordinate system along with the equations of differential length, differential surfaces and differential volume elements.	7					
2.	The given points are A (x = 2, y = 3, z = -1) and B (r = 4, θ = 25°, φ = 120°). Find (i) Spherical co-ordinates of A (ii) Cartesian co-ordinates of B and (iii) Distance from A to B.	7					
3.	Give the importance of unit vectors. And discuss the concepts of co-ordinate system vector.		3				4
4.	Given points A ($x = 2$, $y = 3$, $z = -1$) and B (=4, =-500, $z=2$). Find a unit vector in Cylindrical coordinate (a)At point B directed towards point A (b) At point A directed towards point B		7				
5.	Explain spherical coordinate system in brief. Also write the equations of differential length, differential surfaces and differential volume elements		3				
6.	Explain how dot product and cross product of vectors is carried out (2)			3	4		
7.	Explain cylindrical co-ordinate system of vectors in brief			4			
8.	Define and Explain unit vectors in Cartesian and cylindrical co-ordinate systems.				3		
9.	Obtain the Spherical co-ordinates of $10\overline{a}x$ at the point P(x = 2, y = 3, z = 4).					7	
10.	Explain spherical co-ordinate system and give relationship between Cartesian and spherical co-ordinate system.						7

Module 2	<u>Coulomb's law and Electric Field Intensity</u>						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	An infinite uniform line charge having line charge density of ρ L = 200 nC/m placed on the z-axis. Find the total electric field intensity at (6, 8, 3) m	7					
2.	Derive the expression of (Electric field intensity) at any point P due to infinite uniform line charge distribution in free space (2)	7					7
3.	Express for electric field intensity at any point to a line charge with uniform charge density C/m on the infinitely long Z-axis.		7	7			
4.	State coulomb's law of electric for various type of charge distribution. (2)		4			3	
5.	A point charge Q1 = 2μC is located at P1(3,7,-4) and Q2 = -5μC is at P2 (2,4,-1) (7) At a point (12,15,18) find (i) E (ii) E (iii) aE			7			
6.	State and explain Coulomb's law (3)			3		3	3
7.	An infinite uniform linear charge = 2.0 nC/m lies along the x axis in free space, while point charge of 8.0 nC is located at (0, 0, 1) Find E at (2, 3, 4).				7		
8.	Derive the expression for at point P on the axis of charged circular ring, carrying a charge uniformly along its circumference with density				7		

Module 3	Electric Flux Density, Gauss' law and Divergen	<u>ce</u>					
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	Define divergence and its physical significance.	7					
2.	Derive expression of electric field intensity due to an electric dipole.	7					
3.	Derive Maxwell's first equation applied to electrostatic using Gauss's law	7					
4.	State and explain the gauss's law Also write limitations of Gauss's law (4)		4	3	3		4
5.	Explain electric dipole. Derive the expression for E and V at any distant point from dipole (3)			4			3

Module 4	Energy and Potential						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	Derive relationship between potential and electric field intensity	7					
2.	Define the potential gradient. Derive relationship between potential and electric field intensity (2)		4			7	
3.	A Point charge of 16 nC is located at Q (2, 3, 5) in free space, and a uniform line charge of 5 nC/m is at the intersection of the planes $x = 2$ and $y = 4$. If the potential at the origin is 100V, find V at Point P (4, 1, 3).		7				

Module 5	<u>Current and Conductors & Dielectrics and capacitance</u>									
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18			
1.	Explain boundary conditions between two perfect dielectric materials. (2)	7				7				
2.	Derive the relation between I and J (2)	7			4					
3.	Derive and explain continuity equation for steady current. (2)		7	4						
4.	Derive the expression curl H = J (2)		3			4				
5.	Give examples of different capacitor configuration.					3				
6.	Define relaxation time and derive equation for Relaxation time						7			
7.	Define displacement current and current density.						3			

Module 6	Poisson's and Laplace's Equation						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May –	May - 18	- VOV
1.	Derive Poisson's and Laplace's equations. (3)	7	3	3			
2.	Write Poisson's and Laplace equation. also state use of this equation and uniqueness theorem					3	

Module 7	<u>The Steady Magnetic Field</u>						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May – 18	NOV - 18
1.	State and explain Ampere's circuital law (3)	7				4	4
2.	Explain concept of scalar magnetic potential and magnetic vector potential. (2)		3	7			
3.	State and explain Biot-sawart's law for static magnetic fields as applied to different types of current distribution (3)		7		7	7	
4.	For steady magnetic fields, prove that $\nabla \times H = J$			7			
5.	State and explain Stoke's theorem (4)			3	7	3	4

Module 8	Magnetic Forces, Materials and Inductance						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	Derive Lorentz Force Equation. (2)	7					7
2.	Explain Magnetic dipole moment and magnetization (2)				4	3	
3.	Discuss inductance. Explain self-inductance and mutual inductance.				7		
4.	Classify magnetic materials.				3		

Module 9	<u>Time Varying Fields and Maxwell's equation</u>						
Sr. No.	Questions	Nov – 15	June - 16	Nov - 16	May – 17	May - 18	NOV - 18
1.	State Maxwell's equations in integral form and explain physical significance of the equations.	7	4				
2.	State and explain ampere's circuit law both in integral differential form as used in magnetic field		4				
3.	Write Maxwell's equations in integral form and point form (3)			4	3		4
4.	Derive Point form of Maxwell's equation for static field and time varying field using Faraday's law					7	