COLLEGE OF ENGINEERING & TECHNOLOGY

Unit-4 Micro programmed Control Organization:

Subject:- COA Code:-3140707 Prepared by: Asst. BrofetS MolOSHI (CSE Department, ACET)

Topics to be covered

- Control Memory,
- Address sequencing,
- Micro program example,
- Design of Control Unit

Control Memory

- The function of the control unit in a digital computer is to initiate sequences of micro operations.
- The control unit initiates a series of sequential steps of micro operations.
- The control variables at any given time can be represented by a string of 1's and 0's called a *control word*.
- As such, control words can be programmed to perform various operations on the components of the system.
- A control unit whose binary control variables are stored in memory is called **micro programmed control unit**.
- A memory that is a part of control unit is called a control memory.

Address sequencing

•Control memory address register specifies the address of the microinstruction, and the control data register holds the microinstruction read from memory.

•The microinstruction contains a control word that specifies one or more micro operations for the data processor.

•The next address generator is sometimes called a micro program sequencer, as it determines the address sequence that is read from control memory.

•The control data register holds the present microinstruction while the next address is computed and read from memory. The data register is sometimes called a pipeline register.

•It allows the execution of the micro operations specified by the control word simultaneously with the generation of the next microinstruction.

•Shweta Joshi

Address sequencing

The address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.

Computer hardware configuration.

•Shweta Joshi

FI	F2	F3	CD	BR	AD	
F1. F	2, F3: Mi	crooperat	ion fields	6. 1		
CD: C	Condition	for bran	ching			
BR: E	Branch fie	he				
AD	Address fi	E-D-D				

• Microinstruction code format (20 bits).

•The micro operations are subdivided into three fields of three bits each.

•The three bits in each field are encoded to specify seven distinct micro operations

•The CD (condition) field consists of two bits which are encoded to specify four status bit conditions

•The BR (branch) field consists of two bits. It is used, in conjunction with the address field AD

FI	F2	F3	CD	BR	AD	
F1. F	2, F3: Mi	rooperal	tion fields			
CD: C	Condition	for bran	ching			
BR: B	Branch fie	hd				
AD	Addiness F	E-D-D				

• Microinstruction code format (20 bits).

•The micro operations are subdivided into three fields of three bits each.

•The three bits in each field are encoded to specify seven distinct micro operations

•The CD (condition) field consists of two bits which are encoded to specify four status bit conditions

•The BR (branch) field consists of two bits. It is used, in conjunction with the address field AD

The fields specify the following information.

1. The label field may be empty or it may specify a symbolic address. A label is terminated with a colon (:).

2. The microoperations field consists of one, two, or three symbols, separated by commas, . There may be no more than one symbol from each F field. The NOP symbol is used when the microinstruction has no micro operations. This will be translated by the assembler to nine zeros.

3. The CD field has one of the letters U, I, S, or Z.

4. The BR field contains one of the four symbols defined in previous Table

5. The AD field specifies a value for the address field of the microinstruction in one of three possible ways:

a. With a symbolic address, which must also appear as a label

b. With the symbol NEXT to designate the next address in sequence

c. When the BR field contains a RET or MAP symbol, the AD field is left empty and is converted to seven zeros by the assembler.

		FI	Microoperatio	m Symbol				
		000	None	NOP				
		001	AC = AC + I	DR ADD				
		010	AC-0	CLRAC				
		011	$AC \leftarrow AC + 1$	INCAC				
		100	AC -DR	DRTAC				
		101	$AR \leftarrow DR(0-)$	0) DRTAR				
		110	$AR \leftarrow PC$	PCTAR				
		111	$M[AR] \leftarrow DR$	WRITE				
		F2	Microoperatio	n Symbol				
		000	None	NOP				
		001	AC -AC - I	OR SUB				
		010	ACCACVI	OR OR				
		911	ACCACAL	DR AND				
		100	$DR \leftarrow M[AR]$	READ				
		101	$DR \leftarrow AC$	ACTDR				
		110	DR = DR + 1	INCDR				
		117	$DR(0-10) \leftarrow P$	C PCTDR				
		F3	Microoperatio	n Symbol				
		000	None	NOP				
		001	$AC \leftarrow AC \oplus D$	R XOR				
		010	$AC \leftarrow AC$	COM				
		011	AC - shl AC	SHL				
		100	$AC \leftarrow shr AC$	SHR				
		101	$PC \leftarrow PC + 1$	INCPC				
		110	PC = AR	ARTPC				
		111	Reserved					
	CD	Condition	Symbol	Comments				
-	00	Always - 1	U	Unconditional brand				
	10	DR(15)	1	Indirect address bit				
	10	AC(15)	S	Sign bit of AC				
_	11	AC = 0	Z	Zero value in AC				
R	Symb	01	Function					
00	JMP	CAR -	-AD if conditi	ion = 1				
10	CAL	CAP.	AD SEP.					
	en en	CAP	-CAP + 1 -	Court + 1 If condition				
0.1	RET	CAP	- SRR / Patient	from subsension				
		energy a	The restriction	mont subroutine)				

DIIWULU JUDIII

Design of Control Unit

- The bits of the microinstruction are usually divided into fields, with each field defining a distinct, separate function.
- The various fields encountered in instruction formats provide control bits to initiate microoperations in the system, special bits to specify the way that the next address is to be evaluated, and an address field for branching.
- The number of control bits that initiate microoperations can be reduced by grouping mutually exclusive variables into fields and encoding the k bits in each field to provide 2^k micro operations

Design of Control Unit

•Shweta Joshi

Design of Control Unit

References

- Images , descriptive Tables , from Computer System Architecture, Morris Mano, 3rd edition Prentice Hall
- Note: These pdf/ppt notes are for purpose of teaching aids to classroom/online sessions study, and in no case imply for GTU syllabus or GTU exam. For GTU syllabus or exam related preparation, one may, however will need to attend college/online lectures and refer books given by GTU in their official syllabus.

