AMIRAJ

COLLEGE OF ENGINEERING \& TECHNOLOGY

Computer Arithmetic

Prepared by:
Asst.sprofes. X $_{s}!$ OSHI
(CSE Department,ACET)

Topics to be covered

- Introduction,
- Addition and subtraction Algorithms
- Multiplication Algorithms
(Booth Multiplication Algorithm)
- Division Algorithms
- Floating Point Arithmetic operations
- Decimal Arithmetic Unit

Introduction

- What are arithmetic instructions- that manipulate data to produce results for solutions of computational problems.
- The basic arithmetic operations- addition subtraction, multiplication and division
- The arithmetic instructions may specify - binary / decimal data- can be fixed point or floating point.
- Negative numbers may be in signed magnitude form.

Introduction

3 ways of representing negative fixed point binary numbers:

- Signed-magnitude representation
- Signed-1's complement
- Signed -2's complement-Most computers use this form for performing arithmetic operation with integers

Introduction

- Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. Usually, an algorithm will contain a number of procedural steps which are dependent on results of previous steps. A convenient method for presenting an algorithm is a flowchart which consists of rectangular and diamond -shaped boxes.

Addition and subtraction algorithm for

 signed-magnitude data- Let the magnitude of two numbers be A \& B. When signed numbers are added or subtracted, there are different conditions to be considered for each addition and subtraction depending on the sign of the numbers.
- The conditions are listed in the table.
- The table shows the operation to be performed with magnitude(addition or subtraction) are indicated for different conditions.

Conditions for addition and subtraction

Subtract Magnitudes
Add
Operation Magnitudes
$(+A)+(+B) \quad+(A+B)$
$(+A)+(-B)$
$(-A)+(+B)$
$(-A)+(-B) \quad-(A+B)$
$(+A)-(+B)$
$(+A)-(-B)+(A+B)$
$(-A)-(+B) \quad-(A+B)$
$(-A)-(-B) \quad-(A-B) \quad+(B-A) \quad+(A-B)$

Addition Algorithm:

- When the signs of A and B are identical, add two magnitudes and attach the sign of A to the result.
- When the sign of A and B are different, compare the magnitudes and subtract the smaller number from the larger.
- Choose the sign of the result to be the same as A if $A>B$ or the complement of sign of A if $A<B$.
- If the two magnitudes are equal, subtract B from A and make the sign of the result positive

Subtraction algorithm

- When the signs of A and B are different, add two magnitudes and attach the sign of A to the result.
- When the sign of A and B are identical, compare the magnitudes and subtract the smaller number from the larger.
- Choose the sign of the result to be the same as A if $A>B$ or the complement of sign of A if $A<B$.
- If the two magnitudes are equal, subtract B from A and make te sign of the result positive.

Hardware Implementation

- Let A and B are two registers that hold the numbers.
- AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and AS .and thus they form Accumulator register.
- We need to perform micro operation, $\mathrm{A}+\mathrm{B}$ and hence a parallel adder.
- A comparator is needed to establish if $A>B, A=B$, or $A<B$,
- We need to perform micro operations $A-B$ and $B-A$ and hence two parallel subtractor.
- An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.
- Thus the hardware components required are a magnitude comparator, an adder, and two sybtractrss

Hardware for signed-magnitude addition and subtraction

Figure 10-1 Hardware for signed-magnitude addition and subtraction.

The output carry is transferred to flip-flop E. ,
The complementer consists of exclusive-OR gates and the parallel adder consists of full adder circuit.

Booth Multiplication Algorithm

- Booth algorithm gives a procedure for multiplying binary integers in signed2's complement representation. Refer flow chart here:

Booth Multiplication Algorithm

This table shows the step-bystep multiplicat ion using BOOTH Algorithm Of:
$(-9) x(-13)$
$=+117$.

Q*Qn+1	$\begin{aligned} & \frac{B R}{\overline{B R}}+10111 \end{aligned}$	$A C$	QR	Q_{n+1}	SC
10	Initial	00000	10011	0	101
	Sabtract BR	01001			
		01001			
	2 sht	00100	11001	1	100
11	ashr	(0010	01100	1	011
0 I	Add $B R$	$\underline{10111}$			
		$\overline{11001}$			
	2 sht	11100	10110	0	010
00	asht	11110	01011	0	001
10	Subtract $B R$	01001			
		00111			
	ashr	00011	10101	1	000

Division Algorithm

Division of two fixed-point binary numbers in signed-magnitude representation is done with paper and pencil by a process of successive compare, shift, and subtract operations
Divisar:
B - 1000$]$

Division Algorithm

Example of binary division with digital hardware

```
```

Divisar B=10001,

```
```

Divisar B=10001,
Dividend
Dividend
shilEAQ
shilEAQ
add }\overline{F}+
add }\overline{F}+
E=1
E=1
Set Q Q - 1
Set Q Q - 1
sh1 EAO
sh1 EAO
Add E+]
Add E+]
E=1
E=1
SetQ}\mp@subsup{Q}{\pi}{}=
SetQ}\mp@subsup{Q}{\pi}{}=
sh1 EAO
sh1 EAO
Ald}H+
Ald}H+
E-0; leave Q Q =0
E-0; leave Q Q =0
Addde
Addde
Rlestore remsinder
Rlestore remsinder
shl E.AQ
shl E.AQ
Acd
Acd
E=1
E=1
Set Q}\mp@subsup{Q}{5}{}=
Set Q}\mp@subsup{Q}{5}{}=
shl E.1Q
shl E.1Q
Add E+1
Add E+1
E=O; Bave Q Q - 0
E=O; Bave Q Q - 0
Add A

```
```

Add A

```
```



```
~
```

~
Restore remainder
Restore remainder
Neglect E
Neglect E
Remaincler in A4:
Remaincler in A4:
Quotient in Q:

```
Quotient in Q:
```

$\overline{\mathrm{B}}+1=01 \mathrm{E11}$

Division Algorithm

Flowchart for divide operation

Floating point Arithmetic operations

- Addition and subtraction of floating point numbers

Decimal Arithmetic Unit

- The user of a computer prepares data with decimal numbers and receives results in decimal form.
- Electronic calculators use an internal decimal arithmetic unit since inputs and outputs are frequent.
- A decimal arithmetic unit is a digital function that performs decimal microoperations.
- It can add or subtract decimal numbers, usually by forming the 9's or 10's complement of the subtrahend.
- The unit accepts coded decimal numbers and generates results in the same adopted binary code.
- A single-stage decimal arithmetic unit consists of nine binary input variables and five binary output variables, since a minimum of four bits is required to represent each coded decimal digit.
- Each stage must have four inputs for the augend digit, four inputs for the addend digit, and an input-carry. The outputs include four terminals for the sum digit and one for the output-carry

Decimal Arithmetic Unit

- One stage of Decimal arithmetic unit

BCD ADDER
 BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in BCD.

References

- Images , descriptive Tables , from Computer System Architecture, Morris Mano, $3^{\text {rd }}$ edition Prentice Hall
- Note: These pdf/ppt notes are for purpose of teaching aids to classroom/online sessions study, and in no case imply for GTU syllabus or GTU exam. For GTU syllabus or exam related preparation, one may, however will need to attend college/online lectures and refer books given by GTU in their official syllabus.

