COLLEGE OF ENGINEERING & TECHNOLOGY

Unit-7 Computer Arithmetic

1010101101011010100101010101010101010101	1010110.
0101010101010101010101101110101010101010	101010101
1010101101010101010101101010101010101010	101010110
1101010101010000101010101010100101010101	101010101
1010010100001010101010111001011001010101	011010100
0001101010100101001101000101010101010101	101010101
0011010101010101001001010101010101010101	011010101
1010101011010110100101010101010101010101	101011010
1010101010101010101011011101010101010101	101010101
1010101101010101010101010101010101010101	101010110
1101010101010000101010101010101010101010	101010101
10100101000010101010101110010110010100101	011010100
0001101010100101001101000101010101010101	101010101
0011010101010101001001010101010101010101	011010101
1010101010110101010101101110101010101010	101010101
1010101101010101010101010101010101010101	101010110
1101010101010000101010101010101010101010	101010101
10100101000010101010101110010110010100101	011010100
0011010101001010011010001010101010101010	101010101
1010101101010100100101010101010101010101	0110101

Subject:- COA Code:-3140707 Prepared by: Asst._SProf._S X IOSHI (CSE Department,ACET)

Topics to be covered

- Introduction,
- Addition and subtraction Algorithms
- Multiplication Algorithms (Booth Multiplication Algorithm)
- Division Algorithms
- Floating Point Arithmetic operations
- Decimal Arithmetic Unit

Introduction

- What are arithmetic instructions- that manipulate data to produce results for solutions of computational problems.
- The basic arithmetic operations- addition subtraction, multiplication and division
- The arithmetic instructions may specify binary / decimal data- can be fixed point or floating point.
- Negative numbers may be in signed magnitude form.

Introduction

- 3 ways of representing negative fixed point binary numbers:
- Signed-magnitude representation
- Signed-1's complement
- Signed -2's complement—Most computers use this form for performing arithmetic operation with integers

Introduction

 Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. Usually, an algorithm will contain a number of procedural steps which are dependent on results of previous steps. A convenient method for presenting an algorithm is a flowchart which consists of rectangular and diamond –shaped boxes.

Addition and subtraction algorithm for signed-magnitude data

- Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted, there are different conditions to be considered for each addition and subtraction depending on the sign of the numbers.
- The conditions are listed in the table.
- The table shows the operation to be performed with magnitude(addition or subtraction) are indicated for different conditions.

Conditions for addition and subtraction

	Add Magnitudes	Subtract Magnitudes			
Operation		When $A > B$	When $A < B$	When $A = B$	
(+A) + (+B)	+(A + B)				
(+A) + (-B)		+(A - B)	-(B-A)	+(A - B)	
(-A) + (+B)		-(A - B)	+(B-A)	+(A - B)	
(-A) + (-B)	-(A + B)		· · · · ·	(
(+A) - (+B)		+(A - B)	-(B-A)	+(A - B)	
(+A) - (-B)	+(A + B)		(<i>,</i>		
(-A) - (+B)	-(A + B)				
(-A) - (-B)		-(A - B)	+(B-A)	+(A - B)	
		ß		Go to Settings to activate Windo	

Addition Algorithm:

- When the signs of A and B are identical, add two magnitudes and attach the sign of A to the result.
- When the sign of A and B are different, compare the magnitudes and subtract the smaller number from the larger.
- Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B.
- If the two magnitudes are equal, subtract B from A and make the sign of the result positive

Subtraction algorithm

- When the signs of A and B are different, add two magnitudes and attach the sign of A to the result.
- When the sign of A and B are identical, compare the magnitudes and subtract the smaller number from the larger.
- Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B.
- If the two magnitudes are equal, subtract B from A and make te sign of the result positive.

Hardware Implementation

- Let A and B are two registers that hold the numbers.
- AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and AS .and thus they form Accumulator register.
- We need to perform micro operation, A+ B and hence a parallel adder.
- A comparator is needed to establish if A> B, A=B, or A<B,
- We need to perform micro operations A-B and B-A and hence two parallel subtractor.
- An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.
- Thus the hardware components required are a magnitude comparator, an adder, and two subtractors

Hardware for signed-magnitude addition and subtraction

Booth Multiplication Algorithm

• Booth algorithm gives a procedure for multiplying binary integers in signed-2's complement representation. Refer flow chart here:

Booth Multiplication Algorithm

This solution 📑								100
shows the step-by-	Q., (2**1	$\frac{BR}{BR} = 10111$ $\frac{BR}{BR} + 1 = 01001$	AC	QR	Q_{n+1}	SC	
step			Initial	00000	10011	0	101	
multiplicat	1	0	Subtract BR	01001				
ion using			- THE WAY	01001				
BOOTH			ashr	00100	11001	1	100	
Algorithm	1	1	ashr	00010	01100	1	011	
Algorithm	0	1	Add BR	10111				
Of:				11001				
			ashr	11100	10110	0	010	
(-9) x(-13)	0	0	ashr	11110	01011	0	001	
	1	0	Subtract BR	01001				
117				00111				
= +11/.			ashr	00011	10101	1	000	
			1.91/2716	11110-011-01		11.1.1		

Division Algorithm

Division of two fixed-point binary numbers in signed-magnitude representation is done with paper and pencil by a process of successive compare, shift, and subtract operations

Divisor:	11010	Quotient = Q
B = (0001	0111000000 01110 011100 -10001	Dividend = A 5 bits of $A \le B$, quotient has 5 bits 6 bits of $A \ge B$ Shift right B and subtract; onter 1 in Q
	-010110 10001	7 bits of remainder $\geq B$ Shift right B and subtract; enter 1 in Q
	01010 010100 10001	Remainder $< B$; enter 0 in Q; shift right B Remainder $\geq B$ Shift right B and subtract; enter 1 in Q
	000110	Remainder $\leq B$; enter 0 in Q Final remainder

Shweta Joshi

Division Algorithm

Example of binary division with digital hardware

Divisor $B = 10001$,		$\overline{B} + 1 = 011$	11		
	E	A	0	SC	
Dividend shl EAQ add $\overline{B} + 1$	D	01110 13100 01111	00000	5	
E = 1 Set $Q_n = 1$ and EAQ Add $B + 1$	1 1 0	01011 01011 10110 01111	00001 00010	4	
E = 1 Set $Q_{\pi} = 1$ shi EAQ Add $B + 1$	1 1 0	00101 00101 01010 01111	00011	3	
$E = 0$; leave $Q_n = 0$ Add B	0	11001	00110		
Restore remainder shi EAQ Add B + 1	1	01010 10100 01111	01100	2	
E = 1 Set $Q_n = 1$ shi EAQ Add $\overline{E} + 1$	1 1 0	00011 00011 00110 01111	01101	1	
$E = 0$; leave $Q_x = 0$ Add B	0	10101	11010		
Restore remainder Neglect E	1	00110	11010	0	
Remainder in A: Quotient in Q:		00110	11010		

Division Algorithm

Flowchart for divide operation

Shweta Joshi

Floating point Arithmetic operations

• Addition and subtraction of floating point numbers

Decimal Arithmetic Unit

- The user of a computer prepares data with decimal numbers and receives results in decimal form.
- Electronic calculators use an internal decimal arithmetic unit since inputs and outputs are frequent.
- A decimal arithmetic unit is a digital function that performs decimal microoperations.
- It can add or subtract decimal numbers, usually by forming the 9's or 10's complement of the subtrahend.
- The unit accepts coded decimal numbers and generates results in the same adopted binary code.
- A single-stage decimal arithmetic unit consists of nine binary input variables and five binary output variables, since a minimum of four bits is required to represent each coded decimal digit.
- Each stage must have four inputs for the augend digit, four inputs for the addend digit, and an input-carry. The outputs include four terminals for the sum digit and one for the output-carry

Decimal Arithmetic Unit

References

- Images, descriptive Tables, from Computer System Architecture, Morris Mano, 3rd edition Prentice Hall
- Note: These pdf/ppt notes are for purpose of teaching aids to classroom/online sessions study, and in no case imply for GTU syllabus or GTU exam. For GTU syllabus or exam related preparation, one may, however will need to attend college/online lectures and refer books given by GTU in their official syllabus.

