

DEPARTMENT: MECHANICAL

SEMESTER : 5

SUBJECT NAME: OPERATION RESEARCH

SUBJECT CODE: 3151910

FACULTY NAME: Assist. Prof. Kedar H Badheka

ASSIGNMENT: 6

<u>UNIT: 3 Exercise and case problems on Transportation and Transshipment Problems.</u>

1. A Manufacturer wants to ship 8 loads of his product as shown in following matrix. The matrix gives the mileage from origins, O to the destinations, D. The shipping cost is Rs. 10 per load per mile. What will be the optimal schedule and optimal cost? Use Vogel's approximation method to find initial basis feasible solution and MODI method to obtain optimal solution.

	D_1	D_2	D_3	Supply
O_1	50	30	220	1
O_2	90	45	170	3
O_3	250	200	50	4
Demand	4	2	2	

2. Company has factories A1, A2 & A3 which supply to warehouses at W1, W2 & W3. Weekly factory capacities are 240,200&130 units respectively. Weekly warehouses requirements are 190,150&110 units respectively. Unit transportation in costs Rs. As follows:- Find I.B.S. BY VAM method & Optimum solution BY MODI method.

Opumum solution B i WoDi method.								
$C \cap I$	OLLEGE OF ENGINEERING & TECHNOLOGY							
UUL	LLUL UI	\mathbf{W}_1	W_2	W_3	SUPPLY			
	A_1	16	20	12	240			
	A_2	14	8	18	200			
	A_3	26	24	16	130			
	DEMAND	190	150	110	450			