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. (b) Shaft in Rotating Condition
Fig. 13.2.1 (a) Shaft in Stationary Condition Fig.13.2.1 '

— When shaft is in rotating condition as shown in
Fig. 13.2.1(b), then there are two forces acting on the shaft : _
1. Centrifugal Force = m o’ (y + e) : It acts in radially
outward direction through point G.
2. Restoring Force = Ky : It acts in radially inward
direction through point G.
— In equilibrium condition, the centrifugal force is equal to
restoring force. Therefore, _ N
Centrifugal force = Restoring force
. mw’(y+e) = Ky

mo’ y+ mo’e = Ky
Ky—m(uzy = ma’e
yX- mwz) = mo’e
' mo’e o
mw’e __K K/m

& K—m:z— e lf(K(jll)zm)
L (Y
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—  From Equation (13.2.1) it is clear that, as the angular speed of
the shaft ‘@’ increases, the deflection of the shaft ‘y’
increases. When ‘@0’ becomes equal to ‘@,’, the deflection of
the shaft y becomes infinity .

—  Thus, the speed at which the deflection of the shaft tends to
be infinity is known as critical speed or whirling speed.

—  Therefore, the critical speed or whirling speed of shaft is

given by,
0, = o,
% .
or 0, = E , rad/s . .(13.22)
of UJ_c = gg , rad/s -
(1)) 1 K
or N, = E‘;=EE '\/-;_l‘
1 & ;
or NC = E 6 r-p.s- Av--(l3;2.3)
Where, N, = Critical speed, inr.p.s.

. & = Suatic deflection oflheshaﬁ, m
Hence, Equation (13.2.1) can be written as,
(/o )2c
Y S 1/ ~(1324)

13.2.1 Ranges of Shaft Speed

—  From Equation (13.2.4) it is seen that, there are three Tanges
of shaft speed ‘o’ : )

Ranges of shaft speed I

1. Shaft speed (o) < Critical speed (w,)

2. Shaft speed () = Critical speed ()

3. Shaft speed (») > Critical speed (mJE

Fig. C13.1 : Ranges of shaft speed
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Centrifngal Force = mo’a : It is acting at point ‘G’ along
Restoring Force = Ky : Itis acting at point ‘S’ along SO.
Damping Force = coy: It is acting at point ‘S’ in a direction
opposite to the linear velocity of point ‘S'.

where, @y = the linear velocity of point ‘S’, m/s

Due to damping force, the points O, S and G are no longer on
a straight line, but they form a triangle as shown in

Fig. 13.3.1(b).
For the forces acting on the shaft, at equilibrium,
, XF, =.0;
~ —-Ky+ me’a cos y=20 (@ -
and XE, =0;
..(b)

It is essential to eliminate ‘¥ and ‘h"frc_:m Equations (a)

—cmy-l-m(nzasin\l! =0

and (b).
From Fig. 13.3.2; .
asiny = esind ..(€)

and acosy = y+ecosd ) ..(d)

On substituting the values of ‘a cos ¥’ from Equation (d) in

Equation (a) we get, : '
XKy +ma’ (y+ecos$) =0
—Ky+mm2y+mu)2ecos¢=0

(K—mmz)y = mmzecosdl ©(e)
- G
]
|
a siny I a esind
v L]
(¢] S
. ¢ —
acosy ————™
Fig. 1332
On substituﬁng the value of a sin y from Equation (c)lin
Equation (b), we.get, ’ :
—ca)y+mm2esin¢ =0
. coy = mo’esind ()
Dividing Equation (f) by Equation. (e), we get,
; tan¢ = '(_K—-c%m’f 331  (b)Forces Acting on Shaft in Deflected Position
2%(w/ o) 1as3) - Fig. 133.1
or tan¢ = m—n): ..(13.3. |
4 2%/ o) ] :
¢ =t | T wie)
2%/ w,) ]
; , -1
or . ¢ = tan [ mﬁ ..(133.3)

Equation (13.3.2) gives the phase angle between _the
eccentricity line and deflection line ie. angle by leuch
deflection lags. Equation (13.3.1) may be represented in the
vector form as shown in Fig. 13.3.3.

AMIRAJ

COLLEGE OF ENGINEERING & TECHNOLOGY



N < e

—  Equation (13.3.4) gives the deflection of the geometric center
of the rotor from the initial undeflected position. .

— Tt is seen that Equations (13.3.3) and (13.3.4) for whirling of
shaft are same as that for the forced damped vibrations with
rotating and reciprocating unbalance. In case of forced

K -ma 2 .

(Rl damped vibrations due to rotating or reciprocating unbalance,
Fig. 1333 ‘ the unbalance was in terms of the small mass m,, whereas in

From Fig. 13.3.3 we can also write, this case the unbalance is defined in terms of the total mass

‘m’ with eccentricity ‘e’.

sind ‘= 0 .(8)
\/(cm)z + (K- mw’?

) _13.3.1Various Possible Phase Angles
Substituting the value of sin ¢ from Equation (g) in Equatio: .

(B we-gel —  From Equation (13.3.3) following observations are made :
_ 2 cw . i .
coy = e ooy + (K- moD) (.|) When 0 << @, ; ¢ = 0° (Heavy side out)
_ minle (i) When @<, ;0° < ¢ <90° (Heavy side out)
Y = K- mo + (o)’ (iii) When =@, ; ¢ =90° ,
2
y = elo/,) ' (iv) When o>, ;90° <0< 180° (Light side out)
B z : - .
'\/[1—(m/mn)’]1+(2§;)‘9l-‘) Q) When_m >>w, ; ¢ = 180° and y = —e (Light side out
- (1334 and rotor rotates about its C.G.)
e(@/ @) T _ FRig. 1334 shows various possible phase angles with
or y = —_——— :

damping.

() When o =0, @Wheno>0, () Wheno>>a,
. andy=—e
Fig. 13.3.4 : Possible Phase Angles (With Damping)
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Fig. 134.1: Horizont_al Shaft With Single Rotor

—  The magnitude of the varying torque acting on the rotor due

to gravitational force is given by,
T = mgecosmt (@)

— Due to this varying torque T, the rotor will retard (from
ot = — 90° to + 90°) and accelerate (from wt = + 90° to 270°)
during rotation, Qo :

—  The angular acceleration or retardation of the rotor is given
by,

T mgecosomt
a = T

=— .(b)
where, I = mass moment of inertia of rotor, kg- m’
—  Hence, the tangential acceleration or retardation of the point
G is given by, :

2 .
f, = 0-e=TECCBQL )

. . L 1
—  Hence the tangential force acting at point G is given by,
. 2 2 :
F - m-ft=-) eICOS(!)f. -“(d}

=

- FromFig. 134.3, |
~  The vertical component of the tangential force is given by:

(b)WhenGI:i&sonLgﬁSideofO . ) “123‘-:2(:052mt
Fig. 13.4.2 ' Fv = Fcos mt:—__l._‘
' 2 .2
mge )
= "—2'I—x2cos ot
ngez : B
= 21 (1 +cos\2mt) ) -

] "+ 2c0s? 0 = (1 + cos 20)

Fig.13.43 ; | i\ M I R ‘\J
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1. Rayleigh’s Method

This method is based on the principle that, the maximum
kinetic energy is equal to the maximum potential energy.
The maximum kinetic energy is given by,

. 2
(KE)mu = iml Vl

1

1 2
+5m, v, +

o2 1
2m3 V3+2n:|,4 A\

2

- 1 1 1
AKE) = g my (7, @) 471 (0 007 +5 5 O30 4+ (g0 4 .

(PE),..,

KE)px =

122
or 29, Z my, --(a)
, R S |
The maximum potential energy is given by,
1 1 1 1.
=5m gyt MY, ¥ M8 Y3+ Mg Y, +
1 0
of (PE)y, =38 21 m,y, (b)
2=
According to Rayleigh's method
T (KB = (PBE)g,
.{c)
Therefore, the natural frequency is,
(1) o
- P
oW fo= o
n
: g X
1 i=
“on " yHz  ..(135.0)
z
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2. Dunkerley’s Method

1 1 1 1 1 1
E"(‘c@”@f@”@*""“@""‘“3‘5'2’

where, [

= Critical speed of shaft E:anying number
of point loads and uniformly distributed
load, rad/s .

= Critical speed of shaft neglecting its
mass and all points loads except point
load 1, rad/s

= UCritical speed of shaft neglecting its

mass and all point loads except point
load 2, rad/s

= Critical speed of shaft neglecting its
mass and all point loads except point
load 3, rad/s

= Critical speed of shaft neglecting its

mass and all point loads except point
load 4, rad/s

= Critical speed of shaft considering its

mass and neglecting all point loads,
rad/s

—  Consider a shaft carrying several point loads with uniformly
distributed load, as shown in Fig. 13.5.2.

Fig. 13.5.2 : Shaft Carrying Several Point Loads With
Uniformly Distributed Load )

- Let,

8, 8, 8, = static deflections of shaft due to load W, W, and
W, when considered separately
8, = static deflection of shaft due to self weight or due to
. the uniformly distributed Joad.
—  We know that, natural frequency of transverse vibrations or
critical speed due to load W, is, .

g -
©, = 3:, rad/s

—  Similarly, natural frequency of transverse vibrations or
critical speed due to loads W, and W, are,

and

shaft is,

(Dc=

' 2
S 52 , rad/s

Oy
g
Wy = g, Tad/s

Also the natural frequency of transverse vibrations or critical

speed due to uniformly distributed load or self weight of the
| AMIRAJ
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Notes

—  The static deflection due to point load for a simply sup
beam is given by, :
2:2
Wi 1,
8 = FE
—  The static deflection due to uniformly distributeq load oy ,
simply supported beam is given by,
sw it
8 = 384 EI
where,l, and L, = distance of point load from boty ends
E = modulus of elasﬁcuy for the shaft
material, N/m*

1 = moment of inertia of shaft <-%- 3¢
.l = total length of shaft, m

64

Soln. : Given :Diameter of shaft,

d = 50mm=0.05m
lengthof shaft, ! = 3m '
m=70kg  m,=90kg m,=50kg

25m —=t- 0.5 m e

- 3m
~ Fig.P.1352

1. Static Deflections : Refer Fig.P. 13.5.2;

—  The static deflection due to mass m, is,

m, gl l

5 . _ —70x9.81 x(1)*x (2"
1 = T3E] < o
3x2x10 x—(005) x3
= 497x10 %
—  The static deflection due to mass m, is,
! 2. 2
mygl I,
% = 3E
_ —90x981x2%x (1)

‘3x2x10"x£(0.05)‘x3

6.39% 107
—  The static deﬂectton due to mass m3 is,

m,glll2
3El!
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_ -50x9.81x (2.5 x (0.5
nmn_mn
3x2x10" x £ (0.05)* x 3

= 138%x10°m
_  The static deflection due to self weight is,
_5mgl‘_ 5 x10 x 9.81 x (3)*
. % 3B4EIC winll T
384x2x 10" x & (0.05)"
= 1.68x10°m

2. Natural Frequencies Due to Individual Loads

— The natural frequency of transverse v1brat10ns due to
* individual masses are,

w, = £— —3981 44.43 rad /:
et 8, \J497x10 " =
0, = i— ———3981 39.18 rad/!
2 = 639%10 > radis

Py 281 ctaimils
Os = 1.38 x 10

= 1 211257 |22
s = 112577\ [5=1. 1.68x10°

w =
= 86.01, rad/s
According to Dunkerley's method, .
1 1 1 1 1 1.
= O S |
(@ c)z = (md)z + © c92 + (mca)z + (wd)z + (ma)
: 1 1 1 1
@493t (39.18)" T (8431 T (86.01)’
1 -3
. — = 143x10
(®)
s o, = 264radls
or f = 4202Hz . ADS.
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