

Assignment : 3 Balancing

1.	What do you mean by balancing of rotating masses? What is the need of balancing?	
2.	Explain Graphical and Analytical Method of Balancing of Several Masses rotating in same	
3.	plane.Explain Graphical and Analytical Method of Balancing of Several Masses rotating in different planes.	
4.	Explain Balancing of Reciprocating Masses in Single Cylinder Engines.	
5.	Explain Balancing of Reciprocating Masses in Multi-Cylinder Inline Engines.	
6.	Explain Concept of Direct and Reverse Cranks.	
7.	What is Partial Balancing of Locomotives? Explain effect of Partial Balancing of Locomotives such as variation of tractive force, Swaying Couple, Hammer Blow.	
8.	Explain Balancing of V engines.	
9.	Explain Balancing Machines.	

COLLEGE OF ENGINEERING & TECHNOLOGY

	the fact that have been find that a fact at a find at a find that the fact at a find that the fact at a find that find that the
1.	Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg respectively. The
	corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the angles
	between successive masses are 45°, 75° and 135°. Find the position and magnitude of the
	balance mass required, if its radius of rotation is 0.2 m.
2.	A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200 kg
	respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured from
	A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured anticlockwise
	are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed in planes X
	and Y. The distance between the planes A and X is 100 mm, between X and Y is 400 mm and
	between Y and D is 200 mm. If the balancing masses revolve at a radius of 100 mm, find their
	magnitudes and angular positions.
3.	A shaft carries four masses in parallel planes A, B, C and D in this order along its length. The
	masses at B and C are 18 kg and 12.5 kg respectively, and each has an eccentricity of 60 mm.
	The masses at A and D have an eccentricity of 80 mm. The angle between the masses at B and
	C is 100° and that between the masses at B and A is 190°, both being measured in the same
	direction. The axial distance between the planes A and B is 100 mm and that between B and C
	is 200 mm. If the shaft is in complete dynamic balance, determine : 1. The magnitude of the
	masses at A and D; 2. the distance between planes A and D; and 3. the angular position of the
	mass at D.

	1			
4	A two cylinder locomotive engine has following specifications:			
4.	Reciprocating masses/cylinder = 300 kg			
	Crank Radius = 290 mm			
	Angle between $crank = 900$			
	Driving wheel diagram = 1780 mm			
	Distance between cylinder centres = 640 mm			
	Distance between driving wheel plans = 1530 mm			
	Determine:			
	(1) The fraction of reciprocating masses to be balanced if the hammer blow is not to exceed 45			
	kN at 95 km/hr speed.			
	(2) The variation in the tractive effort.			
	(3) The magnitude of swaying couple.			
_	The following data refers to an inside cylinder locomotive:			
5.	Mass of reciprocating parts/cylinder	: 36 kg		
	Revolving masses/cylinder	: 16 kg		
	Pitch of the cylinder	: 700 mm		
	Angle between crank	: 900		
	Length of each crank	: 320 mm		
	Wheel tread diameter	: 1900 mm		
	Distance between plans of wheel	: 1800 mm		
	Limiting speed of locomotive	: 100 kmph		
	If total revolving masses and 2/3 of the reciprocating parts are to be balanced, determine : Variation of tractive force.			
	Maximum swaying couple.	CONTRACT REPORT AND ADDR		
CULLEGE OF ENGINEERING & TECHNOLOGY				